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Supervised machine learning algorithms are often predicated on the minimization of loss
functions which measure error of a given prediction against a ground truth label. The choice of loss
function to minimize corresponds to a summary statistic of the underlying data distribution that is
learned in this process. Historically, loss function design has often been ad-hoc, and often results in
losses that are not actually statistically consistent with respect to the target prediction task. This
work focuses on the design of losses that are simultaneously convex, consistent with respect to a
target prediction task, and efficient in the dimension of the prediction space. We provide frameworks
to construct such losses in both discrete prediction and continuous estimation settings, as well as
tools to lower bound the prediction dimension for certain classes of consistent convex losses. We
apply our results throughout to understand prediction tasks such as high-confidence classification,

top-k prediction, variance estimation, conditional value at risk, and ratios of expectations.
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Chapter 1

Introduction

Decisions are made every day that make forecasts about future events: should someone in
Boulder wear a coat on their commute to work? Is the answer to this multiple choice question ‘C’?
What web pages should we return for the search query “How to write a dissertation”? How tall
will a 10 month old child grow to be? Only rarely are these decisions made with absolute certainty.
Machine learning algorithms are often designed to make predictions answering these questions based
on some labeled examples that “teach” the algorithm about different patterns that help answer the
question at hand. As we design algorithms that operate under with the vast amounts of uncertainty
in their decisions and recommendations, it is becoming increasingly important to think critically
about the predictions we make.

In supervised machine learning, we teach machine learning algorithms by feeding them a
large set of labeled training examples. The algorithm then makes predictions about unlabeled
future inputs by using some hypothesis function learned by minimizing a loss function, or error
punishment, over the training set. If everything else works out perfectly, minimizing this loss should
teach us about some summary statistic of the data distribution. While some summary statistics are
well-studied, such as binary classification and least-squares regressions, others have emerged such
as variance estimation, high-confidence classifiers, top-k classification, and others, with no obvious
method for constructing a corresponding loss function for the statistic.

This dissertation moves towards a general framework for being able to design a “nice” loss

function that appropriately corresponds to a given prediction task. Particularly, we study loss



functions satisfying three desiderata: they should be convex, consistent, and efficient. In Algorithms
101, we aim construct algorithms that are simultaneously correct and efficient. This same idea
applies, where correctness corresponds to consistency (§ 2.3), and efficiency comes from the notion
of prediction dimension (§ 2.4). Throughout this dissertation, we typically hold convexity and

consistency as firm requirements, and at times construct lower bounds on the efficiency of a loss.

1.1 Motivating examples

1.1.1 Leo’s morning commute

Suppose our protagonist Leo wants bring an umbrella to work if it rains that afternoon, but
does not want the extra burden of carrying the umbrella if there is no rain. As a Computer Scientist
(and therefore not a meteorologist), Leo does not know much about the probability of rain today.
Thankfully, Leo does know a meteorologist, Madison, who happens to be an expert in forecasting
rain probabilities. When he asks what the probability of rain is for tomorrow, however, Madison

1 Because of this, Leo decides to pay Madison with respect to

may not want to be honest with him.
her accuracy. If she forecasts rain chance p% and it rains, Leo decides he will pay her $p dollars,
and if there is no rain, he will pay her $(100 — p). Under this scoring rule, we will see that Madison
is actually incentivized to exaggerate her beliefs, so Leo will want to reward her some other way.
These types of forecasting problems have been studied since the early 1950s, dating back to
Brier [15]. Brier’s intuition was that experts on a topic, here: the weather, have some probabilistic
belief about the outcome of a future event. Moreover, Leo can incentivize truthful reporting about
the his belief of the expected future outcome, rain or no rain, if Madison’s reward for accuracy is
maximized by her prediction matching her belief in some sense. Concretely, if Madison believes
there is a 70% chance of rain tomorrow, Leo wants to score her so that she maximizes her ezpected

score by predicting a 70% chance of rain— not by exaggerating and saying 100% of rain. While

we talk about maximizing scores here, one can equivalently consider minimizing losses, as shown

! While this scene is enacted by my nibling and sister-in-law, we deviate from reality here, as Madison is a very
honest person.



in Figures 1.1 and 1.2. Indeed, throughout this dissertation, we will talk about minimizing loss

functions, as this is the norm in machine learning.

1.1.2 Banking

We use properties, or summary statistics, as a tool to understand loss function design for a
variety of tasks in machine learning. In some contexts, the it may not be feasible to assume an
algorithm or person knows the full distribution over outcomes, but they may at least be able to give
a good estimate of the summary statistic we are asking about.

For example, a regulating agency might want to learn a bank’s financial risk in their investment
portfolio. For variety of reasons (finite sample size, granularity, etc.), it is often too expensive for
the bank to learn their entire risk distribution on their investments. Suppose instead that the while
the bank cannot plausibly estimate their entire risk distrubtion, they can estimate some summary
statistics of the distribution, such as variance or conditional value at risk. While the regulating
agency may know what measure of estimate of financial risk they want to learn from banks, it is
important for banks to be honest, as manipulating their report may enable them to take on excessive
risk in their investments. As an auditing tool, the regulating agency decides they want to ask banks
for risk, and score them after observing financial outcomes at the end of the month. However, given
the summary statistic the regulator seeks to learn (conditional value at risk, variance, etc.), it is not
immediately clear how they should score banks for their reports. Thus, it is important to have a
framework that starts with a desired statistic to learn, and moves towards a scoring rule or loss

function that is consistent with respect to this given statistic.

1.1.3 To predict or not to predict?

Machine learning algorithms are used to make all sorts of predictions: some more high-stakes
than the other. While it might not be a huge deal if you lose $1 betting on a soccer game based on
an algorithm’s recommendation, it would be very costly if someone was denied or delayed medical

attention because an algorithm’s recommendation did not detect any anomalies in their records.
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Figure 1.3: Minimizing two different expected losses when P[Y = 1] = % on report set R = [0, 1]
and outcome set J = {0,1}. The blue point is arg min,cq Ey,L(7,Y). Squared loss in Figure 1.1
elicits the expected value, while the linear loss in Figure 1.2 elicits the mode. In this model, we are
free to choose the report r on the horizontal axis, and ideally want to pick r that minimizes the loss
in expectation, regardless of what the distribution is.



Given the well-known racial disparities in medical data, it would be unsurprising for an algorithm
detecting cancerous tumors on someone’s skin to have high uncertainty about the presence of a
tumor [5].

Given a lack of proportional positive (tumor-present) examples on non-white skin tones,
suppose our algorithm has 49% confidence that a given scan depicts a cancerous tumor given an
image x.

Risk scores Suppose the patient’s doctor was given a risk score (49% cancer) for this particular
scan to contain a tumor. An overwhelmed, overbooked doctor might not know how to properly
interpret such a risk score, and might be too time-constrained to invest the time to look into each
scan carefully, so they determine they need some assistance flagging examples that require their
attention, but are happy to let the computer filter out some examples that are clearly not tumors.

Binary classifier Since it is most likely the patient does not have a tumor, a thresholded binary
classifier would return “no tumor,” leading to delays and inaccess to medical care for this patient.
This lack of care might quite literally be a matter of life and death, and might have cost the patient
more money when more drastic and invasive care is needed later [53].

Learning to defer Suppose instead, the algorithm does not always make decisions. Instead, it
only flags the doctor to review cases the algorithm is uncertain about, and classifies either positively
or negatively on instances with pretty high certainty. This might lead to more manual review of one
group’s scans over another’s, but yields a tradeoff that allows the doctor more time to focus on other
work, while still flagging them to review cases where their expertise can supplement an algorithm.

While learning to defer may optimistically might improve performance of human-assisted
algorithms for underserved groups such as Black folks, this is not guaranteed to be the case. Learning
to abstain is not necessarily the correct way to design a melanoma-detection algorithm, but this
example simply points to the different outcomes that can be attained in algorithm-assisted decision-
making. However, we pose this example as an invitation to think critically about the prediction task

at hand, and how its design might benefit or harm the end users or subjects of these algorithms.



1.1.4 Impact of loss function choice on predictions

Least-squares regression In least squares regression, we wish to estimate a continuous
variable y € Y = R, and have our sample of labeled examples {(z;,y;)}",. As an example, suppose
x; represents an infant’s birth date (relative to due date), and y; their height at birth. In Figure 1.4,
we find the linear regressor that minimizes empirical loss on the dataset shown. Typically, in Least
Squares Regression, we minimize squared loss L*(r,y) = (r — y)?, yielding the regressor shown by
the blue dotted line. Fixing any input x € R, there is a conditional distribution over ) on what the
outcomes might be, so what are we supposed to estimate in one real-valued prediction? Since we

are minimizing squared loss, let us reason quickly about the minimizer(s) of expected squared loss? .

L(u,y) = (u,y)?

E,L(u,Y) = u? — 2uE,[Y] + E,[Y?]
d

r€argminE,L(u,Y) < d—|u_TIEpL(u,Y) =0
U u "
d d /o 9
T, L(uY) = - (u? = 2uR,[Y] + E,[v?))
=2u —2E,[Y]
d
Tu u:rEpL(u, Y)=0 < r=E,[Y]

Therefore, our least squares regression teaches us to predict the expected value on the conditional
distribution, E,[Y], where p := Pp[Y | X = 2] is the conditional distribution on a given input Z
and D is the data distribution over X x ).

Quartile Regression As we just saw above, fitting a dataset with least squares regression
teaches us to predict the expected value over the dataset. However, least-squares is only one of
many kinds of regression. Another commonly applied regression is a-quartile regression, in which
one wants their regressor fr (&) > ¢ with probability . In particular, when o = 1/2, we want to
learn the median of the conditional data distribution, and can do so by minimizing absolute loss on

the dataset. Figure 1.4 shows this regressor in the dashed red line, and it is important to observe

2 For this derivation, let us assume that p has a finite second moment.



height (¢m)
50

40F

M Least Squares
H Absolute Loss

5; birth date (rel. due date)

Figure 1.4: Fitting a linear model to estimate § = f1(Z) = mr& + bz, on new input & by minimizing
least squares and absolute losses yield different regressors on this dataset; that is, we observe
different my, and by, depending on the loss L.

that this regressor is less skewed by outliers than the regressor learned from squared loss.

1.2 Contributions of this dissertation

There are four papers which lay the foundation of this dissertation [26, 27, 29, 30]. All four
move towards understanding and characterizing convex, consistent surrogates in various settings,
introduced later in Table 2.1.

An Embedding Framework for Consistent Polyhedral Surrogates Chapter 3 focuses
on discrete prediction tasks for which a target loss matrix is given (Quadrant 1 in Table 2.1), and
construct a polyhedral (piecewise linear and convex) surrogate that is consistent with respect to the
target loss. We introduce the notion of a polyhedral surrogate embedding the loss matrix, and show
this notion of embedding implies consistency.

We say that a surrogate embeds a target loss if there is some injection mapping target reports
into R? such that the target loss for the report and surrogate of its embedding match for all reports
and outcomes and a report minimizes the target loss (in expectation) if and only if its embedding
minimizes the surrogate. Perhaps surprisingly, we find that this embedding condition is equivalent
to matching Bayes risks of the surrogate and target losses (Proposition 5).

In making the case for restricting to polyhedral surrogates, we find that every discrete target

loss can be embedded by a polyhedral surrogate and every polyhedral surrogate embeds a target



loss (Theorem 1).

It is not obvious that embedding is a sufficient condition for constructing a consistent surrogate.
In order for a surrogate to be consistent with respect to a target loss matrix, one needs a link mapping
surrogate reports back to target reports so that the surrogate and link pair is consistent. Chapter 3
gives a link construction and proves that it yields a consistent link and surrogate pair, implying
that embedding is a sufficient condition for consistency, and even equivalent when restricting to
polyhedral surrogates.

Convex Elicitation of Continuous Properties Chapter 4 focuses on continuous estimation
tasks properties (Quadrant 4 of Table 2.1) with a finite outcome set. In particular, we focus on
identifiable properties — those whose level sets can be described by flats (affine subspaces).

As these properties are identifiable, we know they are elicitable, but ask the question of when
they are elicitable via a convex loss. It turns out the answer is quite simple: in this case, we show a
property is elicitable <= it is convex elicitable.

For intuition, Steinwart, Pasin, Williamson, and Zhang [83, Theorem 5] show that identifiable

properties can be elicited by a loss function comparing reports r to outcomes y of the form

Ly = [ A@)V(e)ds

where V is the function which identifies the property of interest.

The proof relies on constructing the function A so that A(r)V (r,y) is monotonically increasing
for all y € ), and therefore the constructed surrogate is convex and elicits the given property. We
can do this by constructing a bound using the “most decreasing” and “least increasing” identification
functions V' (-,y) pointwise for » € R. Any A that takes all of its values in this bound will yield a
convex surrogate, so for simplicity we propose taking the midpoint of this bound for all r € R.

Embedding Dimension of Polyhedral Surrogate Losses Chapter 5 further investigates
the embedding framework and proposes embedding dimension: a notion of efficiency for polyhedral
embeddings. Notably, in one dimension (e.g., L : R x ) — R ), embedding and indirect elicitation

are equivalent.



Chapter 5 introduces lower bounds on embedding dimension by reasoning about necessary
conditions for polyhedral embeddings: optimality and monotonicity. The chapter focuses on
bounds attained by considering optimality conditions, and show the bounds given by optimality
conditions are equivalent to a quadratic feasibility program. While this is slightly discouraging
(as quadratic feasibility programs are often computationally expensive to solve), the necessity for
obtaining embedding dimension bounds via optimality suggests that we can do no better by studying
optimality. Tighter bounds might be better found via monotonicity, left for future work.

The quadratic feasibility program given in Chapter 5 yields new bounds on embedding
dimension of the multiclass abstain loss of [71, 72]. The current “best” surrogate (in terms of
prediction dimension) that is calibrated for this task [71] is an embedding, so if there is a gap
between embedding and convex calibration dimension, this suggests that we need new techniques of
constructing such surrogates.

Unifying Bounds on Prediction Dimension for Consistent Convex Surrogates Chapter 6
uses heavily the fact that indirect elicitation is necessary for consistency, and proceeds to derive
lower bounds on convex consistency dimension via property elicitation.

In this chapter, we observe that any level set of a convex elicitable property must be the
union of some flats. This allows us to evaluate the convex consistency dimension (another notion of
efficiency) of a target statistic by understanding the highest-dimension flat we can contain in a level
set of the statistic which also contains a desired distribution over the outcomes. These bounds are
presented in a similar format to those of Ramaswamy and Agarwal [71] in Quadrant 1, though our
bounds that are complementary to theirs. In essence, fitting this flat through the level set allows
us to observe lower bounds by leveraging the global geometry of the property, while the feasible
subspace dimension bounds from Ramaswamy and Agarwal [71] focus on the local structure of the

property around p.



Chapter 2

Setting and desiderata of losses

2.1 Setting

Notation Throughout, we let R denote a report set, and ) an outcome set of size n := |Y|.
Often, n is finite, but this is not always the case.

We let D over X x Y be a joint probability distribution over (possibly vector-valued) random
variables X € X and Y € ), and p be a probability distribution over Ay := {p | p is a probability
measure on Y}. If Y is finite, this is equivalent to Ay := {p € R} | (1,p) = 1}, where 1 is the
n-dimensional all-ones vector. Consider p, = P[Y = y] to be the probability of outcome y on the
distribution over ). We denote by P some subset of Ay, and is therefore a set of probability
distributions. relint(S) is the relative interior of the set .S; this is most often used to discuss
relint(Ay) = {p € Ay : min; p; > 0}, only well-defined for finite Y.

We denote a loss function L : R x J) — R for generic (measurable) loss functions, and
use £ : R’ x Y — R; such a loss / is called a target loss. When ) is finite, we interchangeably
write L : R — R{ as [L(r,y)]yey as a vector of loss values over each outcome y € Y. We also
call the loss L convex if L(-,y) is convex in its first argument for all y € ). Similarly, we call a
loss L polyhedral if L(-,y) is polyhedral (piecewise linear and convex) in its first argument for all
y € Y. Moreover, we often consider the expected loss Ey.,L(u,Y), and will use the shorthand
E,L(u,Y’) or even L(u;p) for this term. At times, it is mathematically more convenient to consider
E,L(u,Y) = (L(u),p) when Y is finite. We also discuss the Bayes risk of a loss L : Ay — Ry such

that L : p+— inf,cgr E,L(u,Y).
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We write L4 for the set of (Borel) B(R?) ® Y-measurable and lower semi-continuous surrogates
L:R?x Y — R such that EypL(u,Y) < oo for all u € R? p € P, that are minimizable in that
arg min, E,L(u,Y") is nonempty for all p € P. Moreover, L3 C L, is the set of convex (in R for
every y € )) losses in Lg. Set £ = UgenLyq, and LV = UgenL5™. The assumption of minimizability
is implicit in previous work, e.g., [6].

The “four quadrants” of problem types In this dissertation, we study surrogate loss
functions, which are used to solve a related, but not identical, “target” problem of interest. Selecting
a hypothesis by minimizing surrogate risk is one of the most widespread techniques in supervised
machine learning. There are two main reasons why a surrogate loss is necessary: (I) the target
problem is to minimize a loss, the target loss, that does not satisfy some desiderata such as continuity
or convexity; or (II) the target problem is to estimate some target statistic and some associated
surrogate loss is required to do so, as in many continuous estimation problems.

Above, we discuss a significant divergence in previous frameworks: constructing a surrogate
given a target loss versus a target statistic. In addition to the two possible targets, we may have
one of two domains: a discrete (i.e. finite) target prediction space, like a classification problem, or
a continuous one, like a regression or point estimation problem. We informally refer to the four
resulting cases—target loss vs. target statistic, and discrete vs. continuous predictions—as the “four
quadrants” of supervised learning problems, shown in Table 2.1.

Despite the ubiquity of surrogate losses, we lack general frameworks to design and analyze
consistent surrogates. While machine learning often seeks to design surrogates for (discrete) target
losses, which in turn elicit some (discrete) property, many surrogates sought in finance are for
target statistics which are known to not be directly elicitable. We provide such a general framework
by “translating” problems given a target loss (Quadrants 1 and 3 in Table 2.1) to the settings of
Quadrants 2 and 4 in Table 2.1, respectively, in which one is given a target property. In § 2.3, we
define and juxtapose three notions of “consistency” to a target problem and justify the sufficiency
of studying all through through the lens of property elicitation. One advantage of this approach is

that indirect property elicitation can be applied in settings spanning any of the four quadrants in
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Table 2.1.
Target loss Target statistic
Discrete Q1, e.g. classification Q2, e.g. hierarchical classification
prediction » & » &
Cm'ztmu.ous Q3, e.g. least-squares regression Q4, e.g. variance estimation
estimation

Table 2.1: The four quadrants of problem types, with an example for each.

The three desiderata: convexity, consistency, and efficiency This dissertation studies the
existence and construction of conver losses that are consistent to a prediction task, and ideally are

efficient in the process. Each of the desiderata are discussed below.

2.2 Convexity

This dissertation studies the consistency and efficiency tradeoffs of convez loss function design.

A function f:R? — R, is conves if, for all z,y € R? and X € [0, 1], we have

JAz+ 1 =Ay) <Af(x)+ 1@ =Nf(y) .

demonstrated in Figure 2.1. Moreover, a function f is concave if —f is convex. Affine functions are
simultaneously concave and convex. We say a loss function L : R? x Y — R, is convex if L(-,y) is
convex in R? for all y € Y. Convex functions have only global optima, and in turn many standard
optimization algorithms require convexity of the objective function so that once stopping conditions
are met (e.g., gradient approaches 6), one can conclude the algorithm has approached a global
optimum, and not just stuck at a local optima somewhere far away from the global.
Mathematically, convex functions a few characteristics we highlight here: they are continuous
on RY, so long as d is finite [77, Corollary 10.1.1], and differentiable almost everywhere. We often

leverage is the fact that all optima are global: mathematically, we write this as 0 € df () <= =zis

an optimal report, where 0f(z) is the subdifferential of f at z. Without convexity, only the reverse



13

Convex loss example

loss

0.8}
— f(Ax+(1-A)y)
— AF(X)+ (1= A) f(y)

— (Global)optimum

0.0 : — ! ! I report
X 1.0 P

Figure 2.1: Example of a convex function. For any two points x,y, drawing a line connecting x and
y does not go below the function on the range [z, y].

implication holds.

2.3 Consistency for a target

In supervised machine learning, we undertake the task of designing losses that are minimized
in expectation by answer the questions to which we want to know the answer. We assume that
samples are drawn independently and identically distributed over some distribution D over the
covariate and label space X x ). Now, supervised algorithms seek to learn a hypothesis h* : X - R
minimizing risk such that

h* c arg mlnE(X7y)NDL(h(X), Y) . (21)
heH

In practice, one rarely knows the true distribution D over X x ), so instead it is common to
minimize empirical risk, with the assumption that empirical data is drawn independently and
identically distributed (i.i.d.) from D. As we tend toward infinite data samples, we then observe,
with high probability, the empirical (sample-based) distribution tends towards the true distribution
by the central limit theorem. Through Empirical Risk Minimization (ERM; eq. (2.2)), machine

learning algorithms learn a hypothesis function to predict a something about the input given some
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description by minimizing a given loss function over the labeled training data, given

1 m
h* € argmin — Y L(h(x;), ;) - 2.2
min S L)1) (22)

While these supervised algorithms may not know the true joint distribution D over features
X and labels Y underlying the data, we can “teach” it on some, say m, labeled training samples
{(xi,yi)}7>,. Here, x; is some vector-representation of an instance, and y; is the label associated
with such instance, which approaches the true distribution D with high probability by the Central
Limit Theorem.

While ERM of a convex surrogate can be done in polynomial time, target problems are often
not in this form. Thus, given a target problem, we want a convex surrogate loss that is consistent
with respect to the target problem, as this is a prerequisite for empirical risk bounds.

In this dissertation, we are primarily concerned with three notions of consistency for a task.
First, we introduce (indirect) property elicitation, which yields formalism around the notion of
“target statistics” mentioned above, as well as a special case of elicitation called embeddings. The
second, statistical consistency, is what we actually desire in machine learning, but is practically often
difficult to with with. The final notion, calibration, is a proxy for consistency that is often easier to
work with than studying consistency directly. The literature has extensively studied the conditions
under which calibration and consistency are equivalent [11, 71, 84, 96], though the tightness of the

relationship between consistency and indirect elicitation is recently formalized [30].

2.3.1 Elicitation

For computational and practical reasons, it is often not plausible to design machine learning
algorithms to estimate the entire outcome distribution, and frankly, this often yields more information
than needed. Instead, we often try to learn some summary statistic, or property, of a data distribution.
For intuition, one can think of p := Pp[Y | X = z| being the conditional distribution on outcomes

Y for a given x € X, where (X,Y) ~ D.



15

Definition 1 (Property, level set). A property T : P — 2R\ {0} is a (set-valued) function that maps
probability distributions to reports. The level set I'y = {p € P :r € I'(p)} is the set of distributions

for which r is in the property set.

We denote T': P — 2R\ {0} by T': P = R, and if |T'\(p)| = 1 for all p € P, then we call T a
single-valued property. Moreover, a property is finite if |R| < oo, and we are in a finite-outcome
setting if |Y| = n < co. If a property is finite, it is assumed that we are in a finite-outcome setting.

In general, we use the notation « to denote a finite property, and I' to denote a general property.

Definition 2 ((Directly) Elicits). A loss L: R x Y — R elicits a property I : P = R if

Vp e P, I'(p) = argmin Ey ., L(u,Y) (2.3)
ueR

for P C Ay. If such a loss elicits ', then we say I' is (directly) elicitable.

Any (minimizable) loss L € L elicits some property; we denote this property I' := propp|[L].
When we say a property is elicitable, we generally mean it is directly elicitable. The notion
of direct elicitation might be too strict. For example, the variance is very plausibly a summary
statistic one might want to learn, but it is not elicitable by any loss L : R x Y — R. This leads
us to discuss a more general notion of indirect elicitation. Indirect elicitation generalizes results

required for the discussion in § 2.4 regarding elicitation complexity.

Definition 3 (Indirectly elicits). A surrogate loss L : R x ) — R and link v : R® — R pair (L,1))
indirectly elicit a property v : P = R if L directly elicits a property T : P = R? such that for all

u € R?, we have I, C Yop(u)- Moreover, we say L indirectly elicits vy if such a link exists.

One example of an indirectly elicitable property that is not directly elicitable is I' : p —
(E,[Y])?. One can simply elicit E,[Y] by squared loss' and square the result, with ¢ : z — 22.
Intuitively, the set of directly elicitable properties is a subset of indirectly elicitable properties, as

we can take 1 to be the identity.

! Restricting p € P to have a finite second moment.
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2.3.2 Embeddings

Chapters 3 and 5 of this dissertation focus on a special case of indirect elicitation called
embeddings for discrete prediction problems in Quadrants 1 and 2 of Table 2.1. When constructing
a surrogate for a discrete target loss, there is often a natural way in which one “embeds” their
discrete reports into R?. Perhaps we map all of the discrete reports into the real line according to
some pre-determined order. This is very natural when R = {1, 2,3}, for example; however, when
R = {red, green, blue}, how to embed these reports is a lot more ambiguous.

The embeddings framework in Definition 5 formalizes this notion of moving from discrete,
target prediction spaces into surrogate prediction spaces, and draws a close connection between
polyhedral (piecewise linear and convex) surrogates and discrete target tasks, and show that
polyhedral embeddings imply calibration, and therefore consistency, of the surrogate with respect

to the target task.

Definition 4 (Representative set). Let I' : P =2 R. We say S C R is a P-representative set for T’
if, for all p € P, we have S Npropp[L] # 0. We further say S is a minimum representative set if it
has the smallest cardinality among all representative sets. Given a minimizable loss L : R — RY, we
say S is a (minimum) representative set for L if it is a (minimum) representative set for propp[L].

If P = Ay, we simply say S is a representative set.

Definition 5 (Embedding). A L :R? — RY such that L € L embeds a loss £ : R — Rz if there
exists a representative set S for £ and an injective embedding ¢ : S — RY such that (i) for allT € S

we have L(p(r)) = L(r), and (ii) for allp € Ay,r € S we have

r € propa [{(p) <= ¢(r) € propy,, [L](p) - (2.4)
If S is a minimal representative set, we say L tightly embeds £.

We show later that a surrogate embeds a target loss if and only if their Bayes risks match,

which implies that a polyhedral Bayes risk is necessary for embedding a discrete loss. Moreover, in
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Chapter 3, given an embedding, we give a link construction so that (L, ) is calibrated with respect

to £, as in the setting of Definition 8.

2.3.3 Consistency: the gold standard

In the nicest of settings, theoretical guarantees of algorithm correctness are often understood
through the requirement of being “probably approximately correct,” or PAC learnable [81, Definition
3.1]. We often generalize PAC learnability to the weaker notion of nonuniform learnability (in order
to cope with infinite VC dimension), and even weaker than this notion is consistency. For simplicity,
we assume that our hypothesis class H is sufficiently rich to attain the Bayes risk, and call this the
realizable setting. In this realizable setting, consistency allows one to derive guarantees that for a
large enough sample, empirical loss of an ERM algorithm approaches the true expected risk with
high probability, regardless of the underlying data distribution [81, Section 7.4].

Constructing consistent surrogates then is a minimum requirement if we want to say anything
about PAC learnability or excess risk bounds more generally. Consistency at least gives us the
weakest guarantees possible that with enough samples, minimizing a surrogate loss on the empirical
sample set corresponds to minimizing the target loss or statistic.

As discussed above, notions of consistency have appeared in the literature with respect to
target losses, and to target statistics or properties. First, given a target loss ¢, we say L is consistent
if optimizing L and applying a link ¢ optimizes ¢ (Definition 6). Second, given a target property -,
such as the a-quantile, we say L is consistent if optimizing L implies approaching, in some sense,
the correct statistic (D) of the conditional distributions D, = P[Y|X = z] (Definition 7). We
then observe that Definition 6 is subsumed by Definition 7, and use this to show consistency implies

L indirectly elicits propp[¢] or 7 respectively.

Condition 1 (Covers). A set D C A(X x Y) covers a convex set P C Ay if, for all p € P, there

exists D € D and x € X such that D has a point mass on z and p = D,.

Definition 6 (Consistent: loss). A loss L € L and link (L,1)) are D-consistent for a set D of
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distributions over X x Y with respect to a target loss £ if, for all D € D and all sequences of

measurable hypothesis functions {fn, : X — R},
EpL(fm(X),Y) — ir}fEDL(f(X),Y) = Epl((¢o fm)(X),Y) — ir}fEDf((dJ o f)(X),Y).

For a given convexr set P C Ay, we simply say (L) is consistent if it is D-consistent for some D

covering P.

Instead of a target loss £, one may want to learn a target property, i.e. a conditional statistic
such as the expected value, variance, or entropy. In this case, following the tradition in the statistics
literature on conditional estimation [25, 47, 78], we formalize consistency as converging to the
correct conditional estimates of the property. Convergence is measured by functions pu(r,p) that

formalize how close 7 is to “correct” for conditional distribution p. In particular we should have

p(r,p) =0 <= r €v(p).

Definition 7 (Consistent: property). Suppose we are given a loss L € L, link function ¢ : R — R,
and property v : P = R. Moreover, let 1 : R x P — Ry be any function satisfying p(r,p) =0 <
r € v(p). We say (L,v) is (u, D)-consistent with respect to v if, for all D € D and sequences of

measurable functions {fm : X — R},
EpL(fm(X),Y) = mfEpL(f(X),Y) = Exp( © fm(X), Dx) = 0. (2.5)

We simply say (L,v) is p-consistent if it is (u, D)-consistent for some D covering P. Additionally,

we say (L, 1)) is consistent if there is a p such that (L,) is p-consistent.

Typical definitions of consistency require D to be the set of all distributions over X x ), so
our condition of covering is much weaker.

Lemma 1 in § 2.3.5 shows that, in fact, one can capture consistency with respect to a target
loss as a special case of consistency with respect to a target property. Specifically, given a target
loss ¢, one can take v = propp[¢] and define u(r, p) := E,l(r,Y) —min, E,¢(r",Y") to be the {-regret
of the report r. This observation allows us to translate consistency from Quadrant 1 to Quadrant 2,

and from Quadrant 3 to Quadrant 4.
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2.3.4 Calibration

In the machine learning literature, Bartlett et al. [11], Zhang [96] originally proposed the notion
of classification calibration, which was later generalized for more prediction tasks to calibration [71,
82, 84], which is equivalent to consistency when one is given a target loss and wants to make discrete
predictions, such as in Quadrants 1 and 3 of Table 2.1.

Bartlett, Jordan, and McAuliffe [11, Theorem 1] shows that a convex, margin-based surrogate
and the link ¢(u) = sgn(u) are consistent with respect to a 0-1 loss if and only if they are calibrated
with respect to 0-1 loss. Bartlett et al. proceed to give a full characterization of calibrated margin-
based convex surrogates (e.g., L(u,y) = f(uy)): L is classification calibrated if and only if f is
differentiable at 0 and f(0) < 0 [11, Theorem 4].

Of course, this leaves a lot to be desired; what if we have a surrogate that isn’t margin-based?
What if we have a more general prediction task than binary classification? In the literature,
calibration has two common definitions, which are equivalent in Quadrant 1 of Table 2.1, though
one definition generalizes to Quadrant 3 [82, Chapter 3]. Studying calibration instead of consistency
allows us to move from distributions D over X x ) to distributions p over ), simplifying the
“instance space” we are considering. For intuition, one may think of p = Pp[Y | X = z] as the
conditional distribution over labels given a data point x € X.

In calibration, any surrogate report that is not linked to the optimal target report has surrogate

loss strictly greater than the Bayes risk of the surrogate.

Definition 8 (Calibrated: Quadrant 1). Let £: R x Y — R be a discrete target loss eliciting y. A

surrogate loss L : R* x Y — R and link ¢ : RY — R pair (L,v) is P-calibrated with respect to { if

VpeP: inf E,L(u,Y) > inf E,L(u,Y) . 2.6
g werefingyy P B B Y) 26)

We simply say L is calibrated if P = Ay.

Many works characterize calibrated surrogates for specific discrete target losses [11, 62, 84, 96],

including the canonical 0-1 loss for binary and multiclass classification. We give another definition
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of calibration which is a special case of calibration via Steinwart and Christmann [82], and show
it is equivalent to Definition 8 in discrete prediction settings (Quadrant 1), but can be applied in
continuous estimation settings as well. We use this more general definition of calibration when
proving statements about the relationship between consistency, calibration, and indirect elicitation.

For a given p € P, the (conditional) regret, or excess risk, of a loss L is given by Ry (u,p) :=

E,L(u,Y) —inf,« E,L(u*,Y).

Definition 9 (Calibrated: Quadrants 1 and 3). A loss L : R? x Y — R is P-calibrated with respect
to aloss {: R xY — R if there is a link ¢ : R — R such that, for all distributions p € P, there
exists a function ¢ : Ry — Ry with ¢ continuous at 0% and ((0) = 0 such that for all u € RY, we

have
LY (u);p) — Lp) < C(EpL(u,Y) — L(p)) - (2.7)

If P = Ay, we simply say (L,v) is calibrated.

Proposition 1. When R and Y are finite, a continuous loss and link (L,1)) are P-calibrated with

respect to a target loss £ via Definition 9 if and only if they are P-calibrated via Definition 8.

2.3.5 Relating calibration, consistency, and indirect elicitation.

Consistency implies indirect elicitation

In what follows, we show consistency implies indirect elicitation, which allows us to apply
indirect elicitation to yield state-of-the-art lower bounds on convex consistency dimension, discussed
in § 2.4.

Given a target loss ¢, we can define a statistic v as the property it elicits. Intuitively,
consistency of a surrogate L with respect to £ and « are equivalent, i.e. in both cases estimates
should converge to values that minimize ¢-loss. We formalize this by letting 1 be the f-regret,

Ry :=Eyl(r,Y) — min,» E,{(r",Y), yielding Lemma 1.

Lemma 1. Let a convex P C Ay be given. Given a surrogate loss L € L, link v, and target loss ¢,

set pu(r,p) == Epl(r,Y) —min E 0(r",Y) as the excess risk of £, Ry. Then there is a D covering
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P such that (L,v) is D-consistent with respect to £ if and only if (L,v) is (u, D)-consistent with

respect to vy := propp|[¢].

Proof. First, observe that pu(r,p) = 0 <= E/(r,Y) = infycr El(r',Y) <= r € v(p). Now
suppose (L, 1)) are consistent with respect to ¢, and take any sequence { f,,,} of measurable hypotheses.

Rewriting the right-hand side of Definition 6,

Epl(p) o frm(X),Y) — inf; Epl(sh o £(X),Y) (2.8)
— Esz(l/J o fm(X), Dx) —0

— Expu(to fm(X),Dx) = 0. (2.9)

Therefore, Ep L(fn(X),Y) = inf EpL(f(X),Y) implies (2.8) if and only if it implies (2.9). Observe
that the assumptions on £ allow us to apply the Fubini-Tonelli Theorem [36, Theorem 2.37|, which

yields the equivalence of eq. 2.8 to the next line. O

Because each target loss in £ elicits some property, but not all target properties can be elicited
by a loss (e.g. the variance), consistency with respect to a property is the strictly broader notion. In
a loose sense, Proposition 1 lets us translate problems about target losses to be about the properties
these losses elicit. This points to indirect elicitation as a natural necessary condition for consistency,

as formalized in Proposition 2.

Proposition 2 ([30, Proposition 1]). For a surrogate L € L, if the pair (L,v) is consistent with

respect to a property v : P = R or a loss £ eliciting vy, then (L,) indirectly elicits ~y.

In other words, indirect elicitation is a necessary condition for consistency.

While the literature has historically used calibration as a proxy for calibration, this suggests
that one can also use indirect property elicitation as a proxy for consistency. Moreover, indirect
elicitation is generally more applicable than calibration, which allows us to consider problem settings
across the four quadrants: most notably, when when one is given a target statistic rather than
target loss. With these results in hand, we proceed through the rest of this dissertation studying

indirect property elicitation as a proxy for consistency.
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Consistency implies calibration (and is sometimes equivalent) FEven with the more
general notion of calibration that extends beyond discrete predictions, we still have consistency
implying calibration. The close connection between indirect elicitation and consistency was first
explored by Agarwal and Agarwal [6]. In particular, calibration of L € £ with respect to ¢ implies
indirect elicitation quite directly: take u € R? and p € Ty, implying u € I'(p). By the definition of

elicitation, E,L(u,Y) = inf ,cga E,L(u/, Y'), so we must have ¢(u) € y(p) from eq. (2.6), as desired.

Proposition 3 ([30, Proposition 4]). If a loss and link (L, ) are consistent with respect to a loss ¢,

then they are calibrated with respect to £.
Moreover, we have calibration implying indirect elicitation.

Lemma 2 ([30, Lemma 6]). If a surrogate and link (L,v) with L € L are calibrated with respect to

aloss £:R xY — R, then L indirectly elicits the property ~y := proppl[¢].

Combining the two results, we can observe the result of Proposition 2 another way: through

calibration.

2.4 Notions of efficiency

For a prediction task, there are infinitely many surrogate losses one might use to learn the
task at hand. However, this dissertation focuses on convex surrogates as this yields better accuracy
guarantees on the optimization problem itself [14, Chapter 9.1]. Recall that in ERM, we are
minimizing the average loss, which is a constant (inverse of sample size) times the sum of convex
functions, which in turn is convex: hence, ERM is also convex.

However, the class of convex, consistent surrogates for a prediction task may still be incredibly
large. For example, exponential loss, hinge loss, logistic loss, and square loss are all convex and
consistent (with the right link) surrogate losses for binary classification. This prompts us to ask: is
one of these losses better than the others, in the sense that optimizing a better loss leads to more

efficient learning algorithms.
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This work studies a few related notion of efficiency, all of which fall under the umbrella

category of prediction dimension.
Definition 10. The prediction dimension of a given surrogate L : R% x Y — R is d.

Since, in ERM on a loss L : R x ) — R,, we find the a hypothesis h : X — R?, the
complexity of ERM is then a function of the prediction dimension d. Thus, we aim to get d as low as
possible, without compromising on convexity or consistency, though studying efficiency-consistency
tradeoffs poses an interesting area of future work.

Prediction dimension has a few metrics that are studied throughout. First, the notion that
we actually care about is conver consistency dimension. We will define this formally, and the rest

informally for now, though the intuition should follow.

Definition 11 (Convex consistency dimension). Given target loss £ : R x Y — R or property
v: P =R, its convex consistency dimension conscyx(-) is the minimum dimension d such that

3L € LG™ and link ¢ such that (L, 1)) is consistent with respect to £ or 7.

Other studied notions of efficiency include convex calibration dimension, which is equivalent
to convex consistency dimension for tasks in Quadrant 1. We additionally study (convex) elicitation
complexity [39], which is the minimum dimension d where there is a (convex) surrogate L : R4 x ) —

R and link ¢ indirectly eliciting a target statistic ~.

Definition 12 (Convex elicitation complexity). Given a target property v, the convez elicitation

complexity elicev () is the minimum dimension d such that there is a L € LG™ indirectly eliciting

.

Finally, as one might guess, embedding dimension is the minimum surrogate dimension such
that a surrogate embeds the target loss (or property).

These notions are all closely related, though not necessarily equal. For example, we know that
embedding is a strict subset of consistency, since the logistic loss does not embed 0-1 loss, but is

consistent with respect to 0-1. In this example, their dimensions are the same anyways since hinge
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(which, like logistic loss, has prediction dimension 1) does embed 0-1 loss, but it is unclear, and

perhaps doubtful, that this holds in general.



Chapter 3

An embeddings framework for consistent polyhedral surrogates

Historically, loss function design is often ad-hoc, and often does not statistically correspond
to the intended prediction task. We start our adventure into the land of convex and consistent
surrogate loss design by first studying prediction problems where there are a finite number of
predictions possible, e.g., Quadrants 1 and 3 in Table 2.1. In this setting, this chapter introduces a
framework motivated by a particularly natural approach for finding convex surrogates, wherein one
“embeds” a discrete loss into R? and “convexifies” in between. Specifically, we say a convex surrogate
L embeds a discrete target loss £ if there is an injective embedding function from the discrete reports
to a (finite-dimensional) vector space such that (i) the original loss values are recovered, and (ii)
a report is f-optimal if and only if the embedded report is L-optimal. Common examples of this
general construction include hinge loss as a surrogate for 0-1 loss and the abstain surrogate [72].

We prove that such an embedding scheme is intimately related to the class of polyhedral
(piecewise-linear and convex) loss functions. In particular, every discrete loss is embedded by a
polyhedral surrogate. Moreover, such an embedding gives rise to calibrated link function, and is

therefore consistent with respect to the target loss.
Theorem 1. FEvery discrete loss £ is embedded by some polyhedral loss L, and every polyhedral loss

L embeds some discrete loss £.

Theorem 2. Given any polyhedral loss L, let ¢ be a discrete loss it embeds. There exists a link

function ¢ such that (L,v) is calibrated with respect to £.
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Beyond consistency, we show that any calibrated link gives rise to a linear surrogate regret bound,
which allows one to translate generalization bounds from the surrogate to the target [42].

Our proofs give explicit constructions for the surrogate (§ 3.1) and link (§ 3.2) embedding a
given discrete loss. Conversely, given an existing polyhedral surrogate, we provide tools to find the
discrete losses they embed (Proposition 4), which may or may not be the desired target. In short, if
one can identify a finite representative set S of reports for a surrogate L, meaning one that always
contains an L-optimal report, then L embeds the loss L|s (L restricted to §). We illustrate all of
these concepts with several examples (§ 3.3).

Underpinning our results are several observations which formalize the idea that polyhedral
losses “behave like” discrete losses. For example, polyhedral losses have a finite number of optimal
sets (the set of reports which minimize the expected loss for some conditional label distribution).
As a result, by selecting a report from each set, one arrives at a finite representative set, which gives
an embedding. For the converse, we prove that the conditions of an embedding are equivalent to
matching Bayes risks (Proposition 5), and use the fact that discrete losses and polyhedral losses
both have polyhedral Bayes risks.

We also provide several observations beyond what is needed to prove our main results, which
we view as conceptual contributions (§ 3.4, 3.5). Using tools from property elicitation, we show
an equivalence between minumum representative sets and “non-redundancy”, wherein no report is
dominated by another. We further show that, while the minimum representative set is not always
unique, the loss values associated with it are unique, giving rise to a natural “trim” operation
on losses. Finally, we show that when restricting to the class of polyhedral surrogates, indirect
elicitation is both necessary and sufficient for consistency (Theorem 8).

Taken together, we the contributions of this chapter are both conceptual and practical. We
uncover the remarkable structure of polyhedral surrogates, deepening our understanding of the
relationship between surrogate and discrete target losses. This structure leads to a powerful new
framework to design and analyze surrogate losses. As we illustrate with several examples, this

framework has already been applied to solve open questions by designing new surrogates, to uncover
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the behavior of existing surrogates, and to construct link functions in complex structured problems.

These results are largely based on Finocchiaro et al. [27], accepted to NeurIPS 2019, with the
journal version [28] currently in preparation.

Related works. The literature on convex surrogates focuses mainly on smooth surrogate
losses [9-11, 21, 23, 65, 75, 89, 95]. In practice, minimizing such surrogates often corresponds
to learning the entire underlying data distribution and compute the desired target task with the
full distribution in hand. However, Ramaswamy et al. [72, Section 1.2] contend that optimizing
nonsmooth losses may enable reduction of the prediction dimension reduction (relative to smooth
losses) while maintaining consistency, improving downstream efficiency of the learning algorithm.

We study consistency through the indirect property elicitation, which one may recall is a
necessary condition. Agarwal and Agarwal [6] were the first to formally connect property elicitation
to consistency, though their results generally do not apply to discrete prediction tasks. The notion
of embedding introduced in § 3.0.2 is a special case of indirect property elicitation. While property
elicitation has an extensive literature by now [35, 38, 45, 55, 57, 66, 79, 83], these works are mostly
concerned with point estimation problems, which is in direct contrast to polyhedral embeddings,

whose structure yields a finite set of possible predictions.

3.0.1 Polyhedral losses

In this chapter, we focus on settings where Y is finite. Most of the surrogate losses we consider
will be polyhedral, meaning piecewise linear and convex; we therefore briefly recall the relevant
definitions. In R?, a polyhedral set or polyhedron is the intersection of a finite number of closed
halfspaces. A polytope is a bounded polyhedral set. A convex function f : R¢ — R is polyhedral if
its epigraph is polyhedral, or equivalently, if it can be written as a pointwise maximum of a finite

set of affine functions [77].

Definition 13 (Polyhedral loss). A loss L : R? — ]RX is polyhedral if L(u)y is a polyhedral convex

function of u for each y € ).
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For example, hinge loss is polyhedral, whereas logistic loss is not. As mentioned in Chapter 1,
we focus on the construction of consistent polyhedral surrogates through the embeddings framework
we now proceed to give. Since we are in Quadrant 1 of Table 2.1, we can evaluate consistency

through the lens of calibration (Definition 8) and abstract away the feature space X.

3.0.2 Embedding

We now formalize the sense in which a convex surrogate can embed a target loss £. Here
one maps each report (prediction) of £ to a point in R?, then constructs a convex loss on R that
agrees with £ at these points. This approach captures several consistent surrogates in the literature
(e.g., [59, 70, 71, 85]; see § 3.3).

An important subtlety is that it is not always necessary to map all target reports to R?. It
is often convenient to allow ¢ to have reports that are “redundant” in some sense. (We explore
redundancy further in § 3.4; see also Wang and Scott [85].) Because of this redundancy, we will
only require an embedding map to be defined on a representative set: a set of reports S such that,

for all label distributions, at least one report r € S minimizes expected loss.

Definition 14 (Representative set). Let I' : Ay = R. We say S C R is representative for I' if we
have T'(p) NS # 0 for all p € Ay. We further say S is a minimum representative set if it has the
smallest cardinality among all representative sets. Given a minimizable loss L : R — R{, we say S

is a (minimum) representative set for L if it is a (minimum) representative set for propp[L].

Wang and Scott [85] first studies the notion of minimum representative sets under the name
embedding cardinality.

We now define an embedding. In addition to matching loss values, as described above, we
require the original reports to be optimal exactly when the corresponding embedded points are

optimal.

Definition 15 (Embedding). A minimizable loss L : R? — ]RX embeds a loss { : R — Rz if there

exists a representative set S for £ and an injective embedding ¢ : S — RY such that (i) for allT € S
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we have L(p(r)) = £(r), and (ii) for all p € Ay,r € S we have

7 € propa,, [f](p) <= ¢(r) € propa ,[L](p) . (3.1)
If § is a minimal representative set, we say L tightly embeds .

To illustrate the idea of embedding, let us examine hinge loss in detail as a surrogate for 0-1
loss for binary classification. Recall that we have R =) = {—1,+1}, with Lyinge(u)y = (1 — uy)+
and lo.1(r), = 1{r # y}, typically with link function ¥ (u) = sgn(u). We will see that hinge loss
embeds (2 times) 0-1 loss, via the embedding ¢(r) = r. For condition (i), it is straightforward
to check that Lyinge(r)y = 20o.1(r)y for all 7,y € {—1,1}. For condition (ii), let us compute the

property each loss elicits, i.e., the set of optimal reports for each p € Ay:

[1700) p1 = 1

1 P> 1/2 | p e (1/2,1)
propay [lo1](p) = § {=1,1} py=1/2  ProPay[Lhingel(P) = 4 [=1,1]  p =1/2
. < 1/2 . p e (0,1/2)

(—OO,—l] pP1 = 0

In particular, we see that —1 € propa,, [lo-1](p) <= p1€]0,1/2] <= -1¢€ propa,, [Lhinge] (P),
and 1 € propa,[lo-1](p) <= p1 € [1/2,1] <= 1 € propa,,[Lhinge|(p). With both conditions of
Definition 15 satisfied, we can conclude that Lyinge embeds 2¢p.1. By results in § 3.4.2, one could
also show that Lyiyge embeds 2€o.1 by the fact that their Bayes risks match (Figure 3.5).

In this particular example, it is known (Lpinge,sgn) is calibrated with respect to 0-1 loss.
More generally, however, it is not clear whether an arbitrary embedding yields a calibrated link.
Indeed, apart from mapping the embedded points back to their original reports, via ¥ (p(r)) = r,
how to map the remaining values is far from obvious. When the surrogate is polyhedral, we give a
construction to map the remaining values in § 3.2, showing that embeddings always yield calibration.

While our notion of embedding is sufficient for calibration (and therefore consistency), it is
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worth noting that it is not necessary for these conditions. For example, while logistic loss does not

embed 0-1 loss, the surrogate and link for logistic loss are consistent.

3.1 Embeddings and polyhedral losses

In this section, we establish a tight relationship between the technique of embedding and
the use of polyhedral (piecewise-linear convex) surrogate losses, showing Theorem 1. We defer the
question of when such surrogates are consistent to § 3.2.

A first observation is that if a loss L elicits a property I', then L restricted to some representative
set S, denoted L|s, elicits I restricted to S. As a consequence, restricting to representative sets

preserves the Bayes risk. We will use these observations throughout.

Lemma 3. Let L : R — R{ elicit T', and let S C R be representative for L. Then L|s elicits

v: Ay = 8§ defined by v(p) =T'(p) NS. Moreover, L = L|s.

Proof. Let p € Ay be fixed throughout. First let r € v(p) = I'(p) N'S. Then r € I'(p) =
argmin,cp (p, L(u)), so as r € S we have in particular r € argmin,cg(p, L(u)). For the other
direction, suppose r € argmin,s(p, L(u)). As S is representative for L, we must have some
s € I'(p) N'S. On the one hand, s € I'(p) = argmin,cx(p, L(u)). On the other, as s € S, we
certainly have s € argmin,cg(p, L(v)). But now we must have (p, L(r)) = (p, L(s)), and thus
r € argmin,p (p, L(u)) = I'(p) as well. We now see r € I'(p) N'S. Finally, the equality of the Bayes
risks ming,er (p, L(u)) = minges(p, L(u)) follows immediately by the above, as § # T'(p) NS C T'(p)

for all p € Ay. O
Lemma 3 leads to the following useful tool for finding embeddings.

Proposition 4. Let a minimizable surrogate loss L : R? — R{ be given. If L has a finite

representative set S C R, then L embeds the discrete loss L|s.

Proof. Let I = propa , [L] and v = propa,[L|s]. Define ¢ : § — S to be the identity embedding.

Condition (i) of an embedding is trivially satisfied, as L|s(u) = L(u) for all u € S. Now let u € S.
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From Lemma 3, for all p € Ay we have u € y(p) <= uweI'(p)NS <= u € I'(p). We conclude

condition (ii) of an embedding. O

We now shift our focus to polyhedral (piecewise-linear and convex) surrogates. Our first
observation is that while polyhedral surrogates cannot elicit finite properties, in the sense that they
have infinitely many possible reports, they do elicit properties with a finite range, meaning a finite
set of possible optimal sets. This observation lets us apply results about finite representative sets to

understand the structure of polyhedral surrogates and the losses they embed.

Lemma 4. Let L : R¢ — R%ﬁ be a polyhedral loss; then L is minimizable and elicits a property
I' := propa,,[L]. Then the range of I', given by I'(Ay) = {I'(p) C RY:p e Ay}, is a finite set of

closed polyhedra.

The full proof is in § 3.7.

Proof sketch. We know that L is minimizable from Rockafellar [77, Corollary 19.3.1] as L is bounded
from below. With Y finite, there are only finitely many supporting sets over Ay. For p € Ay, the
power diagram induced by projecting the epigraph of expected loss onto R? is the same for any
p of the same support ([28, Lemma 5]). Moreover, we have I'(p) being exactly one of the faces
of the projected epigraph since the hyperplane u — (u, (p, L(u))) supports the epigraph of the
expected loss at exactly the property value; moreover, since the loss is polyhedral the supporting
hyperplane must support on a face of the epigraph. Since this epigraph has finitely many faces (as it
is polyhedral), the range of T" is then (a subset) of elements of a finitely generated (finite supports)
set of finite elements (finite faces). Moreover, each element of I'(Ay) is a closed polyhedron since it

corresponds exactly to a closed face of a polyhedral set. ]

See § 3.7 for the full proof.
Theorem 3. FEvery polyhedral loss L embeds a discrete loss.

Proof. Let L : R — ]RX be a polyhedral loss, and I' = propa [L]. By Lemma 4, T'(Ay) is finite

set. For each U € I'(Ay), select uyy € U, and let S = {uy : U € I'(Ay)}, which is again finite. For
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any p € Ay then, let U = I'(p). We have U € I'(Ay) by definition, and thus some uy € S; in
particular, uy € U = I'(p). We conclude that S is representative for L. Proposition 4 now states

that L embeds L|s. O

We now turn to the reverse direction: which discrete losses are embedded by some polyhedral
loss? Perhaps surprisingly, we show in Theorem 4 that every discrete loss is embeddable. Combining
this result with Theorem 3 establishes Theorem 1. Further combining with Theorem 2, proved in
the following section, this construction gives a consistent polyhedral surrogate for every discrete
target loss.

The proof of Theorem 4 uses a construction via convex conjugate duality which has appeared
in several different forms in the literature (e.g. [2, 23, 37]). We then apply a result we will prove
in § 3.4: a minimizable surrogate embeds a discrete loss if and only if their Bayes risks match

(Proposition 5).
Theorem 4. FEvery discrete loss £ : R — R{ is embedded by a polyhedral loss.

Proof. Let n = |Y|, and let C : R™ — R be given by (—£)*, the convex conjugate of —¢. From
standard results in convex analysis, C' is polyhedral as —£ is, and C is finite on all of RY as the
domain of —¢ is bounded [77, Corollary 13.3.1]. Note that —£ is a closed convex function, as the
infimum of affine functions, and thus (—£)** = —£. Define L : R® — RY by L(u) = C(u)1 — u,
where 1 € RY is the all-ones vector. As C is polyhedral, so is L. We first show that L embeds ¢,
and then establish that the range of L is in fact R{, as desired.

We compute Bayes risks and apply Proposition 5 to see that L embeds ¢. Observe that £ is

polyhedral as ¢ is discrete. For any p € Ay, we have

L(p) = inf (p.C(u)L—u)

= inf Cw)— (p,u)

= — sup (p,u) — C(u)
u€eR”

= —C*(p) = —(=L(p))** = Lp) -
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It remains to show L(u), > 0 for all u € R", y € ). Letting ¢, € Ay be the point distribution on
outcome y € Y, we have for all u € R", L(u)y > inf,ern L(u')y = L(6y) = £(d,) > 0, where the

final inequality follows from the nonnegativity of /. O

While Theorem 4 constructs a consistent surrogate for any discrete loss, in some settings,
such as structured prediction and information retrieval, the prediction dimension d = n := |Y| can
be prohibitively large.! Recent work [29, 30, 71] yield characterizations for bounding the prediction

dimension d for consistent convex surrogates and embeddings.

3.2 Consistency via calibrated links

We have now seen the tight relationship between polyhedral losses and embeddings; in
particular, every polyhedral loss embeds some discrete loss. The embedding itself tells us how to link
the embedded points back to the discrete reports (map ¢(r) to r). But it is not clear how to extend
this to yield a full link function v : R* — R, and whether such a 1 can lead to consistency. In this
section, we prove Theorem 2, restated below, which gives a construction to generate calibrated links

for any polyhedral surrogate.

Theorem 2. Given any polyhedral loss L, let £ be a discrete loss it embeds. There exists a link

function ¢ such that (L,) is calibrated with respect to £.

Theorem 2 will follow immediately from Theorems 5 and 6, as discussed below.

Theorem 5 shows that calibration is equivalent to a geometric condition, which we call
separation, of a link function 1. Recall that for indirect elicitation, any point v € I'(p) must link to
a report ¥(u) € y(p). (In terms of losses, u minimizing expected L-loss implies that t(u) minimizes
expected ¢-loss, with respect to p.) The idea of separation is that points in the neighborhood of u
must also link to to a report in v(p). Furthermore, there must be a uniform lower bound € on the

size of any such neighborhood.

! One can always reduce to d = n — 1 in Theorem 4 via a linear transformation from R™ to R" ™! which is injective
on Ay; redefining the surrogate appropriately, the Bayes risks will still match.
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Definition 16 (Separated Link). Let properties T : Ay = R? and v : Ay = R be given. We say
a link ¢ : R — R is e-separated with respect to T and ~ if for all u € R® with (u) ¢ v(p), we
have doo(u, T'(p)) > €, where doo(u, A) = infaea ||u — alloo.?  Similarly, we say 1) is e-separated with

respect to L and € if it is e-separated with respect to propy,, [L] and Propa,, [4].

Theorem 5. Let polyhedral surrogate L : R* — Rz, discrete loss £ : R — RY, and link 1 : R* - R
be given. Then (L,1)) is calibrated with respect to € if and only if 1 is e-separated with respect to L

and £ for some € > 0.

The proof is deferred to § 3.7.
To prove Theorem 2, it now suffices to show that for any polyhedral L embedding some /,
there exists a separated link 1 with respect to L and ¢. This separated link is given by Construction 1

below.

Theorem 6. Let polyhedral surrogate L : R¢ — R{ embed the discrete loss £ : R — R{. Then there
exists eg > 0 such that, for all 0 < € < €y, Construction 1 yields an e-separated link with respect to

L and ?.

The proof is deferred to § 3.7.

To set the stage for Construction 1, we sketch the two main steps in proving Theorem 6: (a)
showing that one can produce a link v such that (L, 1)) indirectly elicits ¢; (b) “thickening” v such
that it is separated.

For (a), begin by linking each embedding point back to its original report. Now we must
determine 1 (u) for non-embedding points. The challenge is that we may have v € I'(p) N T'(p').
Because u minimizes expected surrogate loss for both p and p/, the link must satisfy 1 (u) € v(p)Ny(p).
It is not even clear a priori that these sets intersect. We use the definition of embedding and

elicitation results, discussed in § 3.4, to show that for each such u there exists r € R such that

2 Frongillo and Waggoner [42] define e-separation with a strict inequality deo(u,I'(p)) > € we adopt a weak
inequality as it is more convenient in examples.
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Ly €, ie. any p satisfying u € T'(p) also satisfies » € v(p). This implies that if u € T'(p) NT(p),
then there exists r € y(p) Ny(p’), so we may safely choose ¥ (u) = r.

For (b), we show that this link can be “thickened” by some positive €, as described next.
Consider an optimal surrogate report set, i.e. set of the form U = I'(p) = arg min,, (p, L(u)). By
indirect elicitation, 1 is already correct on U. Now, we “thicken” U to obtain Ue = {u : |[u—U|| < €}.
Then we require that all points in U, are linked to some element of v(p) = arg min, (p, ¢(r)). For
€ > 0, this directly implies separation.

However, it is not clear that this linking is possible because a point u© may be in multiple
thickened sets Ue, U., etc. Therefore, we need to take each possible collection U, U’, etc. and thicken
their intersection in an analogous way.

Given u € UNU'N ..., we define a link envelope ¥(u) which encodes the remaining legal
choices for ¥ (u) after imposing the requirements for each such set U, U’, etc. The key claim is that,
for small enough € > 0, ¥(u) is nonempty: at least one legal value for 1(u) remains. This claim
follows from a geometric result that, for all small enough ¢, a subset of thickenings U, intersect if
and only if the U sets themselves intersect. When they do intersect, indirect elicitation implies that
there exists a legal choice of link for the intersection of the thickenings. It is also important that, by
Lemma 4, for polyhedral surrogates there are only finitely many sets of the form U = I'(p). This
yields a single uniform smallest € such that the key claim is true for all v € R%.

Given the above proof sketch, the following construction is relatively straightforward. We
initialize the link using the embedding points and optimal report sets, then use ¥ to narrow down
to only legal choices; we then pick from v (u) from W¥(u) arbitrarily. Theorem 6 implies that, for all

small enough ¢, the resulting link 1 is well-defined at all points.

Construction 1 (e-thickened link). Given a polyhedral L that embeds some £, an € > 0, and a
norm || - ||, the e-thickened link 1) is constructed as follows. First, define U = {T'(p) : p € Ay}. For
each U € U, let Ry = {r € R : ¢(r) € U}, the reports whose embedding points are in U. First,

initialize the link envelope W : RY = R by setting ¥(u) = R for all u. Then for each U € U, for all
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points u such that inf«cy ||u* — ul| < e, update ¥(u) = ¥(u) N Ry. Finally, define (u) € ¥(u),

breaking ties arbitrarily. If W(u) became empty, then leave 1¥(u) undefined.

Remarks. Construction 1 is not necessarily computationally efficient as the number of
labels n grows. In practice this potential inefficiency is not typically a concern, as the family of
losses typically has some closed form expression in terms of n, and thus the construction can proceed
at the symbolic level. We illustrate this formulaic approach in § 3.3.1.

Applying the e-thickened link construction additionally enables one to verify the consistency
of a proposed link ¢*. For a given € and norm || - ||, suppose one follows the routine of Construction 1
until the last step in which values for the link 1 are selected. Instead, we can simply test whether
the proposed link values are contained in the valid choices, i.e., if ¢*(u) € ¥(u) for all u € R?. If so,
then the proposed link * is calibrated.

Regret transfer rates of calibrated polyhedral surrogates. Recall that the goal of
surrogate regret minimization is to learn a hypothesis A that minimizes expected surrogate loss,
then output hypothesis ¢ o h, which hopefully minimizes expected target loss. Consistency is a
minimal requirement: when surrogate regret® of h converges to zero, i.e. Regret; (h) — 0, so does
target regret of ¢ o h, i.e. Regret,(1) o h) — 0. A natural question is whether fast convergence in
surrogate regret implies fast convergence in target regret. Frongillo and Waggoner [42] shows that,

for polyhedral surrogates, this is always the case.

Theorem 7 ([42], Theorem 1). Let (L,1)) be a polyhedral surrogate that is consistent for a discrete

loss £. Then there ezists ¢ > 0 such that, for all hypotheses h, Regret,(1 o h) < c- Regrety (h).

3.3 Application to Specific Surrogates

Our results give a framework to construct consistent polyhedral surrogates and link functions
for any discrete target loss, as well as to verify consistency or inconsistency for specific surrogate and

link pairs. Below, we illustrate the power of this framework with specific examples from the literature.

3 Regret in this context is the difference between the expected loss of a hypothesis and the expected loss of the
Bayes optimal hypothesis that minimizes expected loss. We refer the reader to [42] for a formal definition.
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To warm up, we study the abstain surrogate given by Ramaswamy et al. [72], and show how to
rederive their link function and surrogate regret bounds (§ 3.3.1). We then give three examples of
subsequent works that use our framework, in the context of structured binary classification (§ 3.3.2),
top-k classification (§ 3.3.4), and multiclass classification (§ 3.3.3). In all cases, our framework
illuminates the behavior of inconsistent surrogates by revealing the discrete losses they embed,
i.e., the true targets for which they are consistent. In structured binary classification and top-k
classification, our framework also gives new consistent surrogates and/or link functions which would
likely have been extremely challenging to derive without our framework.

When using our framework to study the (in)consistency of an existing surrogate L : R? — R{,
often the first step is determining the loss it embeds. To this end, we suggest the following general
approach. First, for each y € Y, divide R? into a finite number of polyhedral regions on which L(-),
is an affine function. Second, identify the vertices of these polyhedral regions.* Third, conclude
that the union of these vertices, S C R?, is a finite representative set for L. Now L embeds L|s
from Proposition 4. From here one can further remove redundant reports until one arrives at a
tight embedding if desired. Once the embedded discrete loss is known, the behavior of the surrogate
becomes more clear: what problem it is solving, and for which restrictions on label distributions is
it consistent for the original problem.

With an embedding in hand, Construction 1 provides a consistent link function. Yet for some
target problems, the search for consistent surrogates has been restricted to those accommodating a
particular canonical link function, such as k largest coordinates of the surrogate report in top-k
classification (§ 3.3.4). Interestingly, our construction is also useful in this situation, where one
wishes to verify the consistence of a given proposed link . Recall that Construction 1 produces a
set-valued link envelope W, which yields the possible values any e-separated link v could map to. If
the given v is indeed consistent, then it is e-separated for sufficiently small €, so one can always

construct such a ¥ and verify that 1 (u) € ¥(u) for all u € RY. More generally, while such canonical

4 In some cases, these regions do not have vertices, such as the top-k surrogates which are invariant in the all-ones
direction; here one can restrict to a subspace, or otherwise select among equivalent reports.
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link functions may be intuitive for a given problem, our results suggest that researchers should
consider setting them aside and instead let Construction 1 determine the link. See § 3.3.2 for a

somewhat intricate example.

3.3.1 Consistency of abstain surrogate and link construction

Several authors consider a variant of multiclass classification, with the addition of an abstain
option [10, 20, 24, 64, 72]. For a € (0,1), Ramaswamy et al. [72] study the loss /% : [n]U{L} — Rz
defined by ¢*(r), = 0if r =y, aif r = L, and 1 otherwise. The report L corresponds to “abstaining”
for a constant loss regardless of outcome y. For the case a = 1/2, Ramaswamy et al. provide a
polyhedral surrogate LY/2, which they call the binary encoded predictions (BEP) surrogate, and link
¥'/2 which are calibrated for £1/2. Letting d = [log,(n)], their surrogate is L'/ : R? — RY given
by

L'2(u)y = max (1 — o(y)ju;), (3.2)

jeld) +

5 Observe that L'/2 is exactly hinge loss when n = 2 and

where ¢ : [n] — {—1,1}% is an injection.
thus d = 1.
The authors show that the link 1'/2 is calibrated, where
P2 = 1 minge(q) [ui| < 1/2 | 5.3
o !(sgn(u)) otherwise
and they go on to establish linear surrogate regret bounds for (Ll/ 2 1/ .

Using our framework, one can show that L'/? embeds (2 times) ¢!/2, with the embedding
given by ¢ where we define p(L) =0 € RY. (Following the general procedure outlined above, the
regions where L'/ is affine all have vertices in the set {—1,1}% U {0}, meaning it is representative,
and L'/? restricted to that set is precisely 2¢'/2 0 ¢=1.) Moreover, as we illustrate in Figure 3.1(L),

the link 1%/2 proposed by Ramaswamy et al. can be recovered from Construction 1 by choosing the

norm || - ||eo and € = 1/2. Hence, our framework could have simplified the process of finding /2,

® To translate our notation to that of Ramaswamy et al. [72], take B = —.
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Figure 3.1: Constructing links for the abstain surrogate L'/? with d = 2. The embedding is shown
in bold labeled by the corresponding reports. (L) The link envelope ¥ resulting from Construction 1
using || ||eo and € = 1/2, and a possible link ¢ which matches eq. (3.3) from [72]. (M) An illustration
of the thickened sets from Construction 1 for two sets U, U’ € U, using || - ||; and e = 1. (R) The ¥
and 1 from Construction 1 using || - ||; and € = 1.

and the corresponding proof of consistency and surrogate regret bounds. To illustrate this point

further, we give an alternate link 1’ corresponding to || - |1 and € = 1, shown in Figure 3.1(R),

+ Julp <1
U (u) = : (3.4)

¢ 1(sgn(u)) otherwise
Construction 1 gives calibration of (L'/2 4) with respect to £}/2. Aside from its simplicity, one

possible advantage of v is that it assigns L to much less of the surrogate space R<.

3.3.2 Lovasz hinge and the structured abstain problem

Many structured prediction settings can be thought of as making multiple predictions at
once, with a loss function that jointly measures error based on the relationship between these
predictions [44, 48, 68]. In the case of k binary predictions, these settings are typically formalized
by taking the predictions and outcomes to be R =) = {—1,1}*, with the ith coordinate giving
the result for the ith binary prediction. A natural family of losses are those which are functions
of the misprediction or disagreement set dis(r,y) = {i € [k] | r; # y;}, meaning we may write

Ef(r)y = f(dis(r,y)) for some set function f : 2(F — R. For example, Hamming loss is given
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by f(S) = |S|. In an effort to provide a general convex surrogate for these settings when f is a
submodular function, Yu and Blaschko [93] introduce the Lovdsz hinge surrogate L : RF — R{
which leverages the well-known convex Lovasz extension of submodular functions. While the authors
provide theoretical justification and experiments, they leave open whether the Lovasz hinge actually
is consistent for ¢7.

Finocchiaro et al. [32] use our embedding framework to resolve the consistency of L, showing
that it is inconsistent with respect to ¢ outside of the trivial case where f is modular, and thus ¢/
is a weighted Hamming loss. Moreover, they show that L/ embeds a variant Ef:bs of ¢ where one is
allowed to abstain on a set of indices A C [k], which they call the structured abstain problem. The
inclusion of abstain options is natural when observing that the BEP surrogate L'/2 from § 3.3.1
coincides with L/ for the function f(S) = 1{S # 0}, so the multiclass abstain problem must be a
special case of the Lovéasz hinge.

To derive ¢/

abs?

the authors show that the set V = {—1,0, 1}k is representative for Lf, for
any choice of f. From Proposition 4, they conclude that L/ embeds Egbs = L|y. Letting

abs(v) = {i € [k] | v; = 0} denote the “abstain” set, we may write Egbs V= RI as

¢l (@), = f(dis(v,y) \ abs(v)) + f(dis(v,y)) . (3.5)

(Observe that abs(v,%) C dis(v, %), since y € {—1,1}*.) By Theorem 2, then, the Lovéasz hinge is
consistent with respect to the structured abstain loss fgbs for some link function.

Actually determining this link function is nontrivial. Simple threshold links like for the
BEP surrogate in § 3.3.1 are not always calibrated, thus casting doubt that a trial-and-error
approach for finding the link would be successful. Instead, they leverage our thickened link
construction (Construction 1) to derive two links ¢* and °, which have somewhat intricate
geometric structure (Figure 3.2). Perhaps surprisingly, by deriving a link envelope ¥ which is
contained in the envelopes for LY for all submodular and increasing f, they prove that both (LS, ")

and (L7, 1°) are simultaneously calibrated with respect to Kgbs for all such f.



41

Figure 3.2: Links 1* and v° such that (L, ") and 9° are calibrated with respect to éf:bs for all
suitable f. All points in a region link to the point in {—1,0,1}? containing the point. * has
a smaller abstain region than ¢°, and may lead to more predictions being made (as opposed to

abstentions).
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3.3.3 Embedding ordered partitions via Weston-Watkins hinge

As the hinge loss is one of the most common surrogates for binary support vector machines
(SVMs), original extensions to the multiclass setting included a one-vs-all reduction to the binary
problem via hinge loss, generating (g) hyperplanes for n labels. Proposing a more efficient solution,
Weston et al. [87] give an alternate surrogate for multiclass SVM prediction, defined as follows for

predictions u € R™,

LYV, = Y (1= (uy — ) (3.6)
i€V Ay

which was later shown to be inconsistent with respect to 0-1 loss [63, 84].

Wang and Scott [85] use the embedding framework to show that the Weston-Watkins hinge
embeds the ordered partition loss, and in turn, recover the result of inconsistency with respect
to 0-1 loss. The report space for this discrete loss can be defined in terms of nested subsets of

[n] :={1,...,n}, as follows.
T:{(TQ,...,TS)‘821,®2T0§T1§...QT5:[71]} .

The ordered partition target loss (97 : T — R{ embedded by Weston-Watkins hinge is then defined

s

©P(T), =S (T Uy ¢ Tia)) ~ 1.

i=1
The ordered partition loss can be interpreted as a variation of 0-1 loss incorporating varying
confidence in different outcomes: reports are a nested sequence of sets, and the punishment for the

outcome y is the cardinality of the first set containing ¥, plus the cardinality of all earlier sets.

LWW

Upon showing that embeds ¢©F Wang and Scott proceed to use their characterization

of propp [EOP] to give sufficient distributions assumptions over labels in P C Ay such that LWW

and the canonical argmax link ¢! (u) : u — r € argmax, (ey, u) are calibrated with respect to 0-1
loss on P C Ay (i.e., that eq. 2.6 holds for all p € P).

[¢OF] and

Sufficient constraints to recover consistency are characterized by comparing propp

mode. Figure 3.3 gives the cells {p € Ay | T' € propp[¢°F](p)} for each T € T, outlined in solid

% To recover the partition of Wang and Scott [85], one can define S; = T; \ T;—1.
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Figure 3.3: Level sets of propp[¢©7], the property
elicited by the ordered partition loss and embedded
by LWW . The level sets of the mode (for which
LW is proposed as a surrogate) are given by
the cells formed by the dashed blue lines. The
level sets of propp[¢©F] whose relative interiors
span multiple cells of the mode cannot be properly
linked to the mode. Here, this is demonstrated as
the report corresponding to the cell has highest
partition has more than one element, where in the
white cells, the “highest” element of the partition
is well-defined.

black. These cells are juxtaposed with the cells {p € Ay | y € mode(p)} for each y € ), outlined
in dashed blue, for which LW was originally proposed as a surrogate. Since each distribution in
[£97]

a cell of prop Ay corresponds to the same optimal report T, the choice of where to link that

report must be constant. Thus, if a cell of propa,, [¢OP] is fully contained in a cell of mode, then

the corresponding prop Ay [607)] value can be mapped to the corresponding mode value. Conversely,
if the relative interior of a cell of prop Ay [607)] corresponding to T spans multiple mode cells, it
becomes unclear to which report the set 7" should be linked. To recover consistency on P C Ay, it

suffices that P excludes these cells.

3.3.4 Surrogates for top-k classification

In settings like object recognition and information retrieval, the top-k classification problem
arises in which one predicts a set S of k labels, and given the true label ¥, receives loss /P (S )y =
1{y ¢ S} [12, 59-61, 73, 74, 92]. In the literature on surrogates for top-k classification, one goal
has been to find a surrogate satisfying the following three desiderata: convexity, consistency, and
piecewise linear (“hinge-like”) structure. Yang and Koyejo [92] show that a number of previously
proposed polyhedral losses, i.e., those which are convex and hinge-like, are inconsistent. They

further suggest that perhaps no surrogate could satisfy all three properties.
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Finocchiaro et al. [31] apply the general approach outlined above to each of the polyhedral
surrogates shown to be inconsistent by Yang and Koyejo, and determine the target problems they
do solve, i.e., the discrete losses they embed. Each of the examined surrogates embeds a discrete loss
which can be viewed as a variant of the top-k problem, allowing the algorithm to express varying
levels of “confidence” on the top k labels or report less than k£ labels. The data distributions for
which these optimal reports differ from the optimal top-k reports are shown in Table 3.1 with n =4
and k € {2,3}.

For example, consider one of the surrogates, L) (u), = (1 —uy + ¢ Zle(u\y)[i]>+, where
uf; denotes the ith largest element of u € R™ and n is the total number of labels; the authors
show that L(*) embeds ¢(T), = Hﬁ#}mﬂ{y ¢ T}, where T is a set of at most k labels. These
embedded losses may therefore be useful in top-k settings where choosing smaller sets may have
some benefit, such as a search engine that can use unused space for advertisements. Using the
losses each proposed surrogate embeds, Finocchiaro et al. go on to derive constraints on the label
distributions under which the proposed surrogates are actually consistent for top-k classification
which subsume previous constraints [92].

Beyond these previously proposed surrogates, Finocchiaro et al. also use our framework to

derive the first consistent polyhedral surrogate for ¢°P-%,

m
L*(u), = max (u[lbme{ﬁaﬁ,{...,n} [1 - % + ;;Wd]) — Uy . (3.7)
That is, they show that indeed a surrogate exists satisfying convexity, consistency, and hinge-like
structure. In light of our framework, this fact is unsurprising: Theorems 1 and 2 imply that every
discrete loss has a consistent polyhedral surrogate. This new surrogate L* is given directly by the
construction from the proof of Theorem 4 and applying Theorem 2 to obtain consistency. While
Theorem 2 guarantees the existence of some consistent link function, the authors further ask whether
the canonical argmax link function ¥, which returns the k largest elements of w, is consistent.

They indeed confirm its consistency using our framework, showing that 1* is e-separated for LF

and (P for any € < 5- [31, Theorem 4.4].
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k
propa,, L]
P2
™ 23
I 14
<2
Y41 p3
D2 P2
o 124 234 124 234
I
=2
P1 (2,134)12,34) D3 b1 134 p3 b1 134 p3

Table 3.1: Visualizations of the properties elicited by the losses (embedded by) L® LG r®
studied by Yang and Koyejo, and L* in eq. (3.7) with n = 4 and k € {2,3}, fixing py = 1/4.
The dashed blue lines form cells whose elements are distributions p corresponding to the same
u € propp [¢()](p) labeling the cell. As the link ¢ must be deterministic, in order for (L*),4) to be
consistent with respect to £(%), each cell outlined in black is fully contained in exactly one cell from
the dashed blue lines. Regions outlined in black that are filled in blue and cross the dashed blue
lines suggest where deciding how to construct a link 1 is ambiguous, as the top-k elements of the
optimal report v are ambiguous. White regions are therefore where the surrogate and any top-k link
are consistent when restricting to data distributions whose conditional distributions are contained
here. On the right, L* shows our proposed surrogate that is consistent for top-k classification,
demonstrated by no blue regions. Table from Finocchiaro et al. [31].
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3.4 Additional Structure of Embeddings

We have shown in § 3.1 a tight connection between embeddings and polyhedral losses. Here
we go beyond polyhedral losses, showing a more general necessary condition for an embedding: a
surrogate embeds a discrete loss if and only if it has a polyhedral Bayes risk, or equivalently, a
finite representative sets (Lemma 5). This result implies that the embedding condition simplifies
to matching Bayes risks (Proposition 5). It also reveals some deeper structure of embeddings,
even down to the geometry of the underlying property, and the equivalence of various notions of
non-redundant predictions. In particular, we study a natural notion of a “trimed” loss function
(Definition 17), and connect this definition to both tight embeddings and non-redundancy from

property elicitation (Proposition 6).

3.4.1 Structure of polyhedral Bayes risks

While we have focused on polyhedral losses thus far, many of our results about embeddings
extend to losses with polyhedral Bayes risks, a weaker condition. (We say a concave function is
polyhedral if its negation is a polyhedral convex function.) To see that every polyhedral loss has
a polyhedral Bayes risk, recall that Theorem 3 constructs a finite representative set S for any
polyhedral loss L, and thus L = L|s by Lemma 3, which is polyhedral. The condition is strictly
weaker: a Bayes risk may be polyhedral even if the loss itself is not. For example, a modified hinge
loss L(r)y = max(r? — 1,1 — ry) as shown in Figure 3.4, which matches hinge loss on the interval
[—1,1] but is strictly convex outside the interval [—2, 2], still embeds twice 0-1 loss.

We now present the structural result of Lemma 5, which will lay the foundation for the rest of
this section. Lemma 5 observes that (minimizable) losses L with polyhedral Bayes risk have finite
representative sets, and derives equivalent conditions on the level sets of the property elicited by L

and tight embeddings. The proof of Lemma 5 is deferred to § 3.7.4.

Lemma 5. Let L: 'R — RX be a minimizable loss with a polyhedral Bayes risk L. Then L has a

finite representative set. Furthermore, letting I' = Propa,, [L], there exist finite sets V C R{ and
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Ex. Modified Hinge, Pr{Y=1]= 0.7
E_pL(uY) Bayes Risk of Modified Hinge
Bayes risk

8- 1.0

0.8

0.6

04+

0.2+

0.0. - 1AOPr[Y:1]

Figure 3.4: (L) Expected modified hinge loss for fixed distribution; (R) Bayes risk of modified hinge
still matches the Bayes risk of hinge.
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© = {0, C Ay | v € V}, both uniquely determined by L alone, such that
(1) A set R' C R is representative if and only if V C L(R').
(2) A set R' C R is minimum representative if and only if L(R') = V.
(3) A set R' C R is representative if and only if © C {T', | r € R'}.
(4) A set R' C R is minimum representative if and only if {T'y |r € R’} = ©.
(5) Every representative set for L contains a minimum representative set for L.
(6) The set of full-dimensional level sets of T is exactly ©.
(7) For any r € R, there exists 0 € © such that T, C 6.
(8) L tightly embeds £ : R' — R{ if and only if £ is injective and {(R') = V.

As a finite representative set implies a polyhedral Bayes risk by Lemma 3, Lemma 5 shows
that polyhedral Bayes risks are equivalent to having finite representative sets, which in turn gives

an embedding by Proposition 4.

Corollary 1. The following are equivalent for any minimizable loss L : R — RK.
(1) L is polyhedral.
(2) L has a finite representative set.
(3) L embeds a discrete loss.

From Corollary 1, L having a finite representative set is an equivalent condition to L being
minimizable and L being polyhedral. (Recall that having a finite representative set already implies
minimizability.) As it is also a more succinct condition, we will use the former in the sequel. In

particular, the implications of Lemma 5 follow whenever L has a finite representative set.
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3.4.2 Equivalent condition: matching Bayes risks

Lemma 5 leads to another appealing equivalent condition to our embedding condition in
Definition 15: a surrogate embeds a discrete loss if and only if their Bayes risks match, visually

demonstrated by Figure 3.5.

Proposition 5. Let discrete loss ¢ and minimizable loss L be given. Then L embeds £ if and only

if L =L

Proof. Define I' = propp ,[L] and 7 = propy, [¢].

= Suppose L embeds ¢, so we have some & C R which is representative for £ and an
embedding ¢ : S — R?; take U := ¢(S). Since S is representative for ¢, by embedding condition (ii)
we have {v; | s € S} = {I'y | u € U}, so U is representative for L. By Lemma 3, we have £ = /|

and L = L|y. As L(¢(-)) = ¢(-) by embedding condition (i), for all p € Ay we have

Up) = ts(p) = min{p, £(r)) = min(p, L(y(r))) = min(p, L(u)) = Llu(p) = L(p) -

<= For the reverse implication, assume L = £, which are polyhedral functions as ¢ is discrete.
From Lemma 5(2), we have some set V C ]R;JVr and minimum representative sets R* C R and U* C U,
for £ and L respectively, such that /(R*) =V = L(U*). As R* and U* are miniumum, they cannot
repeat loss vectors, and thus |R*| = [((R*)| and |L(U*)| = [U*|. We conclude that R* and U*
are both in bijection with V. The map ¢ : R* — R%, given by ¢(r) = u € U* where £(r) = L(u),
is therefore well-defined. Condition (i) of an embedding is immediate. From Proposition 4, ¢

embeds /|z+ and L embeds L

u~, both via the identity embedding. Using condition (ii) from both

embeddings, for all p € Ay and r € R*, we have

r€v(p) <= 1€ propy,[llr-](p) <= @(r) € propa,,[Llu-](p) <= ¢(r) € propa,, [LI(p) ,

giving condition (ii). O

Previous work from Duchi et al. [23, Proposition 4] realized the significance of matching Bayes

risks for calibration with respect to the 0-1 loss. Proposition 5 broadens this general insight to any
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Bayes Risk of 0-1 loss Bayes Risk of Hinge loss Bayes Risk of Logistic loss
Bayes risk Bayes risk Bayes risk
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Figure 3.5: Bayes risks L : p — inf, (p, L(u)) of 0-1, hinge, and logistic losses, respectively, plotted
as a function of py = P[Y = 1]. Observe that the Bayes risks of 0-1 and hinge loss are both piecewise
lienar and concave, while the Bayes risk of logistic loss is also concave, but not piecewise linear.
Proposition 5 states that embedding is equivalent to matching Bayes risks. This confirms that hinge
loss (M) embeds 0-1 loss (L), while logistic loss (R) does not.

discrete loss. Moreover, their result relies the Bayes risk of the surrogate being strictly concave,

whereas polyhedral Bayes risks are never strictly concave.

3.4.3 Trimming a loss

Central to the structural results in Lemma 5 is the existence of a canonical set of loss vectors
VY which match the loss vectors of any minimum representative set. This fact may seem surprising
when one considers that losses may have many mimimum representative sets. For example, consider
hinge loss with a spurious extra dimension, i.e., L : R? — RY | L((r1,72)), = max(0,1 — ryy) for
Y ={-1,+1}. Here the minimum representative sets are exactly the two-element sets of the form
{(—1,a),(1,b)} for any a,b € R. Lemma 5(2) states that, while the minimum representative set is
not unique, its loss vectors are.

Motivated by this observation, let us define the “trim” of a loss to be this unique set V of loss

vectors induced by any minimum representative set, which again is well-defined by Lemma 5(2).

Definition 17 (Trim). Given a loss L : R — R}: with a finite representative set, we define

trim(L) = {L(r) | r € R*} given any minimum representative set R* for L.

Using this notion of trimming a loss, we can again recast our embedding condition: a loss

embeds another if and only if they have the same trim.

Proposition 6. Let L : R? — Rz have a finite representative set, and let £: R — ]Ri be a discrete
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loss. Then L embeds ¢ if and only if trim(L) = trim(¢). Furthermore, L tightly embeds ¢ if and only

if € is injective and trim(L) = ¢(R).

Proof. As L has a finite representative set, it is minimizable. Proposition 5 gives L embeds ¢ if
and only if L = (. If L = ¢, Lemma 5(2) gives trim(L) = trim(¢). For the converse, suppose
trim (L) = trim(¢) =: V. Define the discrete loss liyim : V — V, v — v. Then fyiy, is injective and

lizrim (V) =V, so from Lemma 5(8), both L and ¢ tightly embed fiyi,. We conclude L = liyipm = £

O

from Proposition 5. The second statement also follows directly from Lemma 5(8).

3.4.4 Minimum representative sets and non-redundancy

The condition that a representative set be minimum implies that one has identified exactly
the “active” reports of a loss, in some sense. We now relate this condition to another natural notion
from the property elicitation literature: non-redundancy [37, 55]. Intuitively, a loss is non-redundant

if no report is weakly dominated by another report.

Definition 18 (Non-redundancy). A loss L: R — RY eliciting T : Ay = R s redundant if there

are reports r,v’ € R with r # r’ such that ', C T';, and non-redundant otherwise.

From the structural result of Lemma 5, we can see that in fact these two notions are equivalent

when L has a polyhedral Bayes risk.

Proposition 7. Let L : R — Ri have a finite representative set R'. Then R’ is a minimum

representative set for L if and only if L|g: is non-redundant.

Proof. Let I' = propy,, [L]. Suppose first that L|zs is redundant. Then there exist r,7’ € R’ such
that T, C T',v. Thus, for all p € T, we have {r,r'} C T'(p). Therefore R’ \ {r} still a representative
set, so R’ is not minimum.

Now suppose L|z/ is non-redundant. As R’ is a representative set, Lemma 5(5) gives some
minimum representative set S C R'. Suppose we had some r € R\ S. Now Lemma 5(4,7) gives some
s € § such that I';, C T'y, which contradicts L|g/ being non-redundant. We conclude L(S) = L(R'),

meaning R’ is a minimum representative set. O
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Corollary 2. Let loss L : R — R{ with finite representative set R’ be given. Then L tightly embeds

L|g/ if and only if L|g/ is non-redundant.

In fact, we can show something stronger: the reports in minimum representative sets are
precisely those which are not strictly redundant. To formalize this statement, given I' : Ay = R,
let red(T") :={r e R | I’ € R, I, C I';v} be the set of strictly redundant reports. Similarly, for

minimizable L, let red(L) := red(propp[L]).

Proposition 8. Let L : R — R%: have a finite representative set. Let R’ be the union of all

minimum representative sets for L. Then R’ = R \ red(L).

Proof. Let I' = prop Ay [L]. Let S be a minimum representative set for L, and let s € S. Suppose
for a contradiction that s € red(I'). Then we have some r € R with I'y C I',. From Lemma 5(4,7)
we have some s’ € S such that I, C I'y. But now I'y C T’ C I'y, contradicting S being minimum
representative. Thus § C R \ red(I).

For the reverse inclusion, let 7 € R \ red(I"). Let S again be a minimum representative set for
L. From Lemma 5(4,7), we have some s € S such that I, C I';. By definition of red(L), we conclude
I, =T's. Now take &' = (S \ {s}) U {r}, that is, the same set of reports with r replacing s. We
have {T's | s € S} = {T'y | s € §'}, and thus &’ is a minimum representative for L by Lemma 5(4).

Asr e 8, we have r € R’ and we are done. O

As a corollary, we can state another characterization of trim in terms of redundant reports.
The result follows immediately from the definition of trim.

Corollary 3. Let L : R — RY have a finite representative set. Then trim(L) = L(R \ red(L)).

This result motivates the analogous definition for properties, trim(T) := {T, | r € R \ red(T) }.
We leverage this definition next, to study embeddings at the property level.
3.4.5 A property elicitation perspective on trimmed losses

We conclude this section with a similar structural result about the properties embedded by

another property. We say a property I' : Ay = R? embeds a finite property = : Ay = R if condition
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(ii) of Definition 15 holds. In other words, I" embeds ~ if we have some representative set S C R for
v and embedding ¢ : S — R? such that for all s € S we have v, = Lo

Roughly, our result is as follows. First, if I' embeds v and ~ is non-redundant, the level
sets of I' must all be redundant relative to «. In other words, I' is exactly the property v up to
relabelling reports, just with other reports filling in the gaps between the embedded reports of ~.
When working with convex losses, these extra reports often arise in the convex hull of the embedded
reports. In this sense, we can regard embedding as only a slight departure from direct elicitation: if
a loss L elicits I' which embeds 7, we can almost think of L as eliciting ~ itself. Finally, we have an
important converse: if I' has finitely many full-dimensional level sets, or equivalently, if trim(I") is
finite, then I' must embed some finite elicitable property with those same level sets. The statements

about level sets make use of another corollary of Proposition 6, stated for properties.

Corollary 4. Let I' : Ay = R be an elicitable property with a finite representative set. Then

trim(T") is the set of full-dimensional level sets of T.

Proof. Let L elicit I'. From Lemma 5(4,6), for any finite minumum representative set S C R, the
set {I's | s € S} is exactly the set of full-dimensional level sets © of I'. From Proposition 7, we have
r € R\ red(T") if and only if r is an element of some minimum representative set. As I' has at least

one minimum representative set, we conclude trim(I"') = {I', | r € R \ red(I")} = ©. O

Proposition 9. Let T': Ay = R? be an elicitable property. The following are equivalent:
(1) T' embeds a elicitable finite property v : Ay = R.
(2) trim(T") is a finite set.
(8) There is a finite minimum representative set U for T'.
(4) There is a finite set of full-dimensional level sets 6 of ', and ue = Ay.
Moreover, when any of the above hold, trim(v) = trim(I") = {Ty, |u e U} = O.

Proof. Let L be a fixed loss eliciting I', so that in particular L is fixed. By definition of elicitable

properties, L is minimizable. In each case, we will show that L is polyhedral (or equivalently, that
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L has a finite representative set), and thus Lemma 5 will give us the set © of full-dimensional level
sets of I', uniquely determined by L. We will prove 1 = 2 = 3 = 4 = 1, and in each case show that
the relevant set of level sets is equal to ©, giving the result.

1 = 2: Let S be the representative set for v and ¢ : S — R? the embedding. Since S is
finite, ¢(S) is a finite representative set for I' (and L; thus, L is polyhedral). Corollary 4 now gives
trim(I") = ©, which is finite, showing Case 2.

2 = 3: If trim(T) is finite, then in particular we have a finite set of reports S C R? such that
trim(T") = {T's | s € S}. As T is elicitable, R? is representative for T'. By definition of trim, we have
Ay = U, cpal’y = Utrim(I") = UsesDs, and therefore S is representative for I' and for L. As S is
finite, we have L polyhedral. From Lemma 5(5), we have some minimum representative set Y C S
for L and I', implying statement 3. Moreover, Lemma 5(4,6) gives {I'y, |u € U} = ©.

3 = 4: Let U be a finite minimum representative set for I'. Then L = L|y is polyhedral.
Lemma 5(4,6) once again gives {I', | u € U} = ©. We simply let 6 = O, giving statement 4 as U is
representative.

4= 1: Let S C R such that {T'y | s € S} = ©. Then S is representative for I’ and L, as
ué = Ay. Again, this yields a finite representative set for L. Lemma 3 now states that L embeds

L|s, so I" embeds 7 :=T'|s, giving Case 1. Finally, Corollary 4 gives trim(y) = ©. O

As a final observation, recall that a property I' elicited by a polyhedral loss has a finite range,
in the sense that there are only finitely many optimal sets I'(p) for p € Ay (Lemma 4). Proposition 9
shows the dual statement: there are only finitely many level sets I',, for u € R%. In other words,

both ' and I'~! have a finite range as multivalued maps.

3.5 Polyhedral Indirect Elicitation Implies Consistency

Our last result concerns indirect elicitation as a necessary condition for consistency when
restricting to polyhedral losses. Intuitively, a loss L indirectly elicits a property -y if we can compute

v from propp[L]. To formalize the condition, we use the notion of a property refining another



95

from Frongillo and Kash [37].

Definition 19 (Refines). Let I': Ay = R and IV : Ay = R'. Then T refines I if for allr € R,

there exists r' € R' such that T’y CT,.

Equivalently, T' refines I if there is some “link” function ¢ : R — R’ such that r € I'(p) =
P(r) € T'(p) for all p € Ay. We will use the fact that refinement is transitive: if I' refines I' and I

refines I', then I' refines I'”.
Definition 20 (Indirectly elicits). A loss L indirectly elicits a property v if propp|L] refines .

It is straightforward to verify that consistency, and therefore calibration, implies indirect
elicitation [6, 30, 82]. Indirect elicitation may appear much weaker than calibration, since in
particular it does not depend on the loss except through the property it elicits, and thus only
depends on the exact minimizers of the loss. Surprisingly, for minimizable polyhedral surrogates,
we show the converse: indirect elicitation implies calibration, and therefore consistency.

A useful lemma is that for minimizable polyhedral losses, indirect elicitation must always pass
through an embedding. This result holds more generally whenever L has a finite representative set,

as in § 3.4.

Lemma 6. Let L be a minimizable polyhedral loss. Then L indirectly elicits a property ~v if and

only if L tightly embeds a discrete loss  such that propp[l] refines 7.

Proof. Let L : R — R}i be polyhedral, and I' = propp[L]. Then L tightly embeds a discrete loss
from Lemma 5(8). Furthermore, Lemma 5(4,7,8) implies that propp|[L] refines propp[¢] for any
discrete loss ¢ that L tightly embeds.

We claim that, for any property v, and any loss ¢ that L tightly embeds, propp[L] refines
if and only if propp[¢] refines 7. If propp[l] refines v, then propp[L] refines v by transitivity. For
the other direction, Lemma 5(4,8) shows that the level sets of propp[¢] are contained in the set
{ly | w € R%}. Thus, if propp[L] refines v, then in particular propp[¢] refines v. The result now

follows immediately from the claim. O
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Theorem 8. Let L be a minimizable polyhedral loss which indirectly elicits a finite property . For
any loss € eliciting v, there exists a link v such that (L,) is calibrated (and consistent) with respect

to /.

Proof. Let L : R — R}: be a polyhedral loss indirectly eliciting v : Ay =2 R, and let ¢ be a

discrete loss eliciting v. By Lemma 6, L tightly embeds a discrete loss £¢ : R® — R%ﬁ such that

e

7® 1= propa,, [¢°] refines . From refinement, we can define a function 1/* : R® — R such that for

all 7 € R® and p € Ay we have r € v%(p) = ¥®(r) € y(p). Finally, Theorem 2 gives a link
function 1 : R — R such that (L,®) is calibrated with respect to £°.

Consider 9 := 1™ o ¢° and fix p € Ay. For any u € R?, if ¢*(u) € v°(p), then ¥ (u) =
YR (e (u)) € y(p) by definition of 1 and *. Contrapositively, ¥ (u) ¢ v(p) = 1°(u) & v*(p).
Thus, we have

{ue R [ ¢p(u) v(p)} € {ueR | ¢°(u) €1°(p)} - (3.8)

Combining eq. (3.8) with the fact that (L,°) is calibrated with respect to £°, we have

inf , L(u)) > inf ,L(uw)) > inf (p, L(u)) ,
uERd:w(u)ézv(p)@ () uERd:dJe(u)g'ye(p)Q) (u)) ueRd<p ()

showing calibration of . Consistency follows as calibration and consistency are equivalent in this

setting [71]. O

Theorem 8 gives a somewhat surprising result: despite the fact that indirect elicitation
appears to be a somewhat weak necessary condition for consistency in general, the two conditions

are equivalent for polyhedral surrogates.

3.6 Chapter conclusion

Several directions for future work remain. We show in Theorem 8 that indirect elicitation is
equivalent to consistency when restricting to the class of polyhedral surrogates; we would like to
identify other classes of surrogates for which this equivalence holds. It would also be interesting

to explore embeddings through the lens of superprediction sets [88]. Finally, it is important for
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applications to understand the minimum prediction dimension d of a consistent convex surrogate
L:R%— ]RX for a given target problem, also called its elicitation complexity. One approach to this
question is to first understand the minimum d for which an embedding L exists, a study initiated by
Finocchiaro et al. [29], and then relate this dimension to polyhedral, or general convex, elicitation

complexity.
3.7 Chapter appendix

3.7.1 Power diagrams

First, we present several definitions from Aurenhammer [8].

Definition 21. A cell complex in R? is a set C of faces (of dimension 0, ...,d) which (i) union to
RY, (ii) have pairwise disjoint relative interiors, and (iii) any nonempty intersection of faces F, F'

in C is a face of F and F' and an element of C.

Definition 22. Given sites si,...,s; € R and weights wy, ..., w; > 0, the corresponding power

diagram is the cell complex given by
cell(s;) = {x € RT:Vj € {1,... .k} ||z — s> —w; < ||z — s5]1® —w;} . (3.9)

Definition 23. A cell complex C in R is affinely equivalent to a (convex) polyhedron P C R if

C is a (linear) projection of the faces of P.

Proposition 5, focuses on matching the values of Bayes Risks, while the following result
from Aurenhammer [8] allows us to move towards understanding the projection of the Bayes Risk
onto the simplex Ay. In particular, one can consider the epigraph of a polyhedral convex function
on R? and the projection down to R%; in this case we call the resulting power diagram induced by

the convex function.

Theorem 9 (Aurenhammer [8]). A cell complex is affinely equivalent to a convex polyhedron if and

only if it is a power diagram.
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We extend Theorem 17 to a weighted sum of convex functions, showing that the induced

power diagram is the same for any choice of strictly positive weights.

Lemma 7. Let fi,..., fm : R® = R be polyhedral convez functions. The power diagram induced by

o

Sy pifi is the same for all p € (Ay).

Proof. For any polyhedral convex function g with epigraph P, the proof of Aurenhammer [8,
Theorem 4] shows that the power diagram induced by ¢ is determined by the facets of P. Let
F be a facet of P, and F’ its projection down to RZ It follows that g| is affine, and thus g¢
is differentiable on ZF’ ) with constant derivative d € R?. Conversely, for any subgradient d’ of
g, the set of points {z € R? : d' € dg(x)} is the projection of a face of P; we conclude that
F={(z,g(z) € R :d € dg(x)} and I’ = {x € R?: d € dg(x)}.

Now let f:= Y% | f; with epigraph P, and f’ := %, p;f; with epigraph P’. By Rockafel-

lar [77], f, f" are polyhedral. We now show that f is differentiable whenever f’ is differentiable:
k
0f(x) = {d} <= D 0fi(x) = {d}
i=1

— Vic{l,...,k}, Ofi(x) = {d;}

— Vie{l,....k}, Opifi(x) = {pid;}
k k

= ) Opifilz) = {Zpidi}
=1 =1

k
= 0f'(z) = {Zpidz} :
i=1

From the above observations, every facet of P is determined by the derivative of f at any point
in the interior of its projection, and vice versa. Letting x be such a point in the interior, we now
see that the facet of P’ containing (x, f'(x)) has the same projection, namely {2’ € R? : Vf(x) €
of(x)} = {2/ e RY: Vf'(x) € 0f'(2')}. Thus, the power diagrams induced by f and f’ are the
same. The conclusion follows from the observation that the above held for any strictly positive

weights p, and f was fixed. O

We now include the full proof of Lemma 4.
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Lemma 4. Let L : R — R}i be a polyhedral loss; then L is minimizable and elicits a property
' := propa,, [L]. Then the range of T, given by T'(Ay) = {T'(p) C R :p € Ay}, is a finite set of

closed polyhedra.

Proof. First, observe that L : R — Rjyr is finite and bounded from below (by 0), and thus its
infimum is finite. Therefore, we can apply Rockafellar [77, Corollary 19.3.1] to conclude that its
infimum is attained for all p € Ay and is therefore minimizable; thus, elicits a property.

For all p, let P(p) be the epigraph of the convex function u — (p, L(u)). From Lemma 7,
we have that the power diagram Dy induced by the projection of P(p) onto R? is the same for
any p € EA)}). Let Fy be the set of faces of Dy, which by the above are the set of faces of P(p)
projected onto R for any p € ZA)}).

We claim for all p € (Ay), that T'(p) € Fy. To see this, let u € [(p), and v = (u, (p, L(u))) €
P(p). The optimality of u is equivalent to v’ being contained in the face F' of P(p) exposed by
the normal (0,...,0,—1) € R¥!. Thus, I'(p) = arg min, cpa(p, L(u)) is a projection of F onto R,
which is an element of Fy.

Now for p ¢ ZAy), consider V' € Y, V' # (. Applying the above argument, we have a
similar guarantee: a finite set Fy» such that I'(p) € Fy» for all p with support exactly )’. Taking
F=U{Fy |V €Y,V # 0}, we have for all p € Ay that I'(p) € F, giving Y C F. As F is finite,

so is U, and the elements of U are closed polyhedra as faces of Dy for some )’ C ). O

3.7.2 Equivalence of separation and calibration for polyhedral surrogates

We recall that Theorem 2 states that, if a polyhedral L embeds a discrete ¢, then there exists
a calibrated link 1. Theorem 2 is directly implied by the combination of Theorem 5, that calibration
is equivalent to separation (Definition 16); and Theorem 6, existence of a separated link. Theorem 5
is proven in this section and Theorem 6 is proven in Appendix 3.7.3.

Throughout we will work with the two regret functions: the surrogate regret Ry (u,p) =
(p, L(u)) — L(p), and similarly the target regret Ry(r,p) = (p,(r)) — £(p). In fact, the results in this

section can be extended to surrogate regret bounds; see Frongillo and Waggoner [42].
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We first show one direction: any calibrated link from a polyhedral surrogate to a discrete
target must be e-separated. The proof follows a similar argument to that of Tewari and Bartlett

[84, Lemma 6.

Lemma 8. Let polyhedral surrogate L : R — Rz, discrete loss £ : R — Rz, and link ¢ R4 - R
be given such that (L,%) is calibrated with respect to £. Then there exists € > 0 such that 1) is

e-separated with respect to propp|L] and propp[f].

Proof. Let I' := propp[L] and 7 := propp[f]. Suppose that 1) is not e-separated for any € > 0. Then
letting €; := 1/i we have sequences {p;}; C Ay and {u;}; C R? such that for all i € N we have both
Y(ui) ¢ v(pi) and doo(ui, I'(pi)) < €. First, observe that there are only finitely many values for v(p;)
and I'(p;), as R is finite and L is polyhedral (from Lemma 4). Thus, there must be some p € Ay
and some infinite subsequence indexed by j € J C N where for all j € J, we have 1(u;) ¢ v(p) and
I'(pj) = T'(p).

Next, observe that, as L is polyhedral, the expected loss (p, L(u)) is B-Lipschitz in || - || for

some 3 > 0. Thus, for all j € J, we have
doo(ui; I'(p)) < 5 = Fu" €T(p) [Juj — u'l[oc <¢j
= [{p, L(uj)) — (p, L(u"))| < Be;

= [{p, L(u;)) = L(p)| < Pe;j -

Finally, for this p, we have

inf 7L S inf 7L j :L ’
w8 P E(w)) < Bnbp, L)) = L{p)

contradicting the calibration of . O

For the other direction, we will make use of Hoffman constants for systems of linear inequalities.

See Zalinescu [94] for a modern treatment.

Theorem 10 (Hoffman constant [51]). Given a matric A € R™*"  there exists some smallest

H(A) >0, called the Hoffman constant (with respect to || - || ), such that for all b € R™ and all
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r € R™,
doo (2, 5(A, b)) < H(A)||(Az = )4 |[oo (3.10)
where S(A,b) = {z € R" | Az < b} and (u)+ := max(u,0) component-wise.

Lemma 9. Let L : R? — Rﬁ be a polyhedral loss with T' = propp[L]. Then for any fized p, there

exists some smallest constant Hp,, > 0 such that doo(u,I'(p)) < Hp p R (u,p) for all u € R4,

Proof. Since L is polyhedral, there exist a,...,am € R and ¢ € R™ such that we may write
{p, L(u)) = maxi<j<m a; - u+cj. Let A € R™*? be the matrix with rows a;, and let b = L(p)1 — c,

where 1 € R™ is the all-ones vector. Then we have
S(A,b) := {u e R? | Au < b}
={ueR| Au+c < L(p)1}
={u e R?| Vi (Au+c); < L(p)}
={ueR?| max (Au+¢); < L(p)}
= {ueR?| (p, L(uw)) < L(p)}
=T(p) .

Similarly, we have max; (Au —b); = (p, L(u)) — L(p) = Rr(u,p) > 0. Thus,

I(Au = b)+ oo = max ((Au —b)+);
= max((Au — by, ..., (Au— b)m,0)
— max(max (Au - b);, 0)
= max (Au - b);

= Rp(u,p) .
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Now applying Theorem 10, we have

doo(“’? F(p)) = doo(ua S(A, b))
< H(A)[[(Au = )1 [|oo

= H(A)RL(u,p) - O
We are now ready to prove Theorem 5 as desired.

Theorem 5. Let polyhedral surrogate L : R? — R}:, discrete loss £ : R — R{, and link ¢ : R - R
be given. Then (L,1)) is calibrated with respect to € if and only if 1 is e-separated with respect to L

and £ for some € > 0.

Proof. Let v = propp[f] and I' = propp[L]. From Lemma 8, calibration implies e-separation. For
the converse, suppose 1) is e-separated with respect to L and ¢. Fix p € Ay. To show calibration, it
suffices to find a positive lower bound for Ry, (u,p) that holds for all u € R? with ¢ (u) ¢ v(p).

Applying the definition of e-separated and Lemma 9, 1)(u) ¢ v(p) implies

HL,p

€< doo(u’r(p)) < HL,pRL(uvp) = 1< c

Ry (u,p) .

Let Cy = max,, Ry(r,p). Then Ry(¢h(u),p) < Cp < S22 Ry (u, p).

If Hy, = 0, then for all u € R? we have Ry(¢)(u),p) = 0, so calibration for this p is trivial.
Similarly, if Cy = 0, then Ry(r,p) = 0 for all r € R, so again Ry(1(u), p) = 0 for all u € R%.

Now assume Cy > 0 and Hp,, > 0. Let Cj ) = min,¢, () Re(r,p) > 0. (As we assume Cy > 0,
we must have v(p) # R, so the minimum is attained.) Then for all u such that ¥ (u) ¢ v(p), we

have Ry(¢(u),p) > Cj . Rearranging, we have

¢ - : >0.
l]lllS, i“fuzlp(u)§§'~ (p)<1,(u),p) > L;(p) Since the above holds for all p e Ay, w is calibrated.

3.7.3 Existence of a separated link

In this section, we prove Theorem 6, as discussed at the beginning of § 3.7.2.
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We define some notation and assumptions to be used throughout this section. Let some
norm || - || on finite-dimensional Euclidean space be given. Given a set T and a point u, let
d(T,u) = infyer ||t — ull. Given two sets T,T", let d(T,T") = infiepper ||t — t'||. Finally, let the

“thickening” B(T, €) be defined as
B(T,e) ={ue R :d(T,u) < €}.

Assumption 1. /: Rx)Y — Rﬁ is a loss on a finite report set R, eliciting the property v : Ay = R.
It is embedded by L : R4 x Y — R}i, which elicits the property I' : Ay = R?. The embedding points

are {o(r) : r € R}.

Given Assumption 1, let S C 2% be defined as S = {7(p) : p € Ay}. In other words, for each
p, we take the set of optimal reports R = v(p) C R, and we add R to S. Let U C 28! be defined as
U={T(p):peAy}. ForeachU €U, let Ry = {r: ¢(r) € U}.

The next lemma shows that if a subset of I/ intersect, then their corresponding report sets

intersect as well.

Lemma 10. LetU' CU. If NyerU # O then Nyeyw Ry # 0.

Proof. Let u € NygyU. Our first claim is that there exists r such that I', C ,.. This follows from
Proposition 9, which shows that trim(I') = {v, : r € R}. Each I, is either in trim(I") or is contained
in some set in trim(I"), by definition, proving the first claim. Our second claim is that r € Ny ¢y Ry,
which proves the lemma. To prove the second claim, take any U € U’. There is some p such that
U =T(p), and we have in particular p € I';,. By the first claim, p € ~,. By definition of embedding,

peEY = ¢(r)el(p)=U,sor e Ry. O

Lemma 10 implies that there exists a ¢ such that (L, 1) indirectly elicits ¢: for each u, let
U ={U € U : v € U} be the optimal sets that contain it; choose r from the nonempty set Ny Ry;
and set (u) = r.

The main problem now is to prove a “thickened” analogue of Lemma 10 that extends this

link to points u that are up to € far from an optimal set U. Namely, Lemma 13 will show that if €
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is small enough, then the e-thickenings of all U € U’ intersect if and only if the U sets themselves
intersect. Thus, if u € Ny B(U, €), then u € NyegU, and Lemma 10 gives some legal target
report ¥(u) =1 € Nyey Ru-

The next few geometric results build to Lemma 13. Then, the main proof will be completed

as we have just sketched.

Lemma 11. Let D be a closed, convex polyhedron in R:. For any e > 0, there exists an open,

convex set D', the intersection of a finite number of open halfspaces, such that
D C D' C B(D,e).

Proof. Let S be the standard open e-ball B({0},¢). Note that B(D,¢) = D + S where + is the
Minkowski sum. Now let S" = {u : ||u|ly <} be the closed ¢ ball in L; norm. By equivalence of
norms in Euclidean space [14, Appendix A.1.4], we can take § small enough yet positive such that
S’ C S. By standard results, the Minkowski sum of two closed, convex polyhedra, D" = D + 5" is a
closed polyhedron, i.e. the intersection of a finite number of closed halfspaces. (A proof: we can
form the higher-dimensional polyhedron {(z,y,2) : 2z € D,y € S’, 2 = x + y}, then project onto the
z coordinates.)

Now, if T C T, then the Minkowksi sum satisfies D + 71" C D + T. In particular, because
) €S C S, we have

D C D" C B(De).

Now let D’ be the interior of D”, i.e. if D" = {x : Az < b}, then we let D' = {z : Az < b}.
We retain D' C B(D,¢€). Further, we retain D C D', because D is contained in the interior of
D" =D+ 8. (Proof: if z € D, then for some ~, = + B({0},~) = B(z,v) is contained in D + S'.)

This proves the lemma. O

Lemma 12. Let {U; : j € J} be a finite collection of closed, convex sets with NjcyU; # 0. Let

d > 0 be given. Then there exists eg > 0 such that, for all 0 < € < €y, N;B(Uj,€) € B(N;Uj,9).
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Figure 3.6: Illustration of a special case of the proof of Lemma 12 where there are two sets Uy, Us
and their intersection D is a point. We build the polyhedron D’ inside B(D,d). By considering
each halfspace that defines D', we then show that for small enough €, B(Uy,€) and B(Us,€) do not
intersect outside D’. So the intersection is contained in D', so it is contained in B(D, ).
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Proof. We induct on |J|. If |J| =1, set e = 4. If |[J| > 1, let j € J be arbitrary, let U' = Nj,;Ujr,

B(D, 5)

S

and let C(€) = Ny B(Ujr,€). Let D = U; NU’. We must show that B(Uj,e) N C(e) € B(D,d). By
Lemma 11, we can enclose D strictly within a polyhedron D’, the intersection of a finite number
of open halfspaces, which is itself strictly enclosed in B(D,d). (For example, if D is a point, then
enclose it in a hypercube, which is enclosed in the ball B(D,d).) We will prove that, for all small
enough €, B(Uj,€) N C(e) is contained in D’. This implies that it is contained in B(D, ).

For each halfspace defining D’, consider its complement F', a closed halfspace. We prove that
FNB(Uj,e)NC(e) = 0. Consider the intersections of F' with U and U’, call them G and G’. These
are closed, convex sets that do not intersect (because D in contained in the complement of F). So G
and G’ are separated by a nonzero distance, so B(G,~) N B(G’,~) = 0 for all small enough ~. And
B(G,~) = FNB(Uj,~) while B(G',v) = FNB(U’,~). This proves that FNB(U;,v)NB(U’,~) = 0.
By inductive assumption, C'(e) C B(U’,~) for small enough ¢ = ep. So F N B(Uj,v) N C(e) = 0.

We now let ¢y be the minimum over these finitely many er (one per halfspace). O

Lemma 13. Let {U; : j € J} be a finite collection of nonempty closed, convex sets with NjesU; = 0.

Then there exists €9 > 0 such that, for all 0 < € < €y, NjegB(Uj,€) = 0.

Proof. By induction on the size of the family. Note that the family must have size at least two. Let
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U; be any set in the family and let U’ = Njr;Uj. There are two possibilities.

The first possibility, which includes the base case where the size of the family is two, is the
case U’ is nonempty. Because U; and U’ are non-intersecting closed convex sets, they are separated
by some distance §. So B(Uj,0/3) N B(U’,§/3) = 0. By Lemma 12, there exists ¢, > 0 such that
Ny B(Ujr,€) € B(U',6/3) for all 0 < € < €. Pick ey = min{eg,d/3}. Then for all 0 < e < €, the
intersection of e-thickenings is contained in the (0/3)-thickening of the intersection, which is disjoint
from the (6/3)-thickening of U, which contains the e-thickening of U;.

The second possibility is that U’ is empty. This implies we are not in the base case, as the
family must have three or more sets. By inductive assumption, for all small enough ¢ we have

Njr2;B(Uj, €) = 0, which proves this case. [

Corollary 5. There exists eg > 0 such that, for any 0 < € < €g, for any subset {U; : j € J} of U,

if N;U; = (0, then ﬁjB(Uj,f) =0.

Proof. For each subset, Lemma 13 gives an ¢y > 0. We take the minimum over these finitely many

subsets of U. OJ

Theorem 11. For all small enough €, the epsilon-thickened link 1 (Construction 1) is a well-defined

link function from R’ to R, i.e. ¥(u) # L for all u.

Proof. Fix a small enough € as promised by Corollary 5. Consider any u € R'. If u is not in B(U, ¢)
for any U € U, then we have ¥(u) = R, so it is nonempty. Otherwise, let {U; : j € J} be the
family whose thickenings intersect at u. By Corollary 5, because of our choice of €, the family
themselves has nonempty intersection. By Lemma 10, their corresponding report sets {R; : j € J}

also intersect at some r, so U(u) is nonempty. O
Theorem 6, which we restate here, is now almost immediate.

Theorem 6. Let polyhedral surrogate L : R¢ — R{ embed the discrete loss £ : R — R{. Then there

exists €g > 0 such that, for all 0 < € < ¢y, Construction 1 yields an e-separated link with respect to

L and /.
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Proof. We create i using Construction 1 with the Lo, norm. By Theorem 11, for all small enough
€, ¥ is well-defined everywhere.

To prove separation, suppose u and p are given such that doo(u,U) < €, where U = T'(p).
Then in Construction 1, ¢¥(u) € ¥(u) C Ry = {r : ¢(r) € U}. By definition of embedding,

o(r) e U =T(p) = r € v(p). So we obtain ¥(u) € y(p) whenever doo(u, I'(p)) < €, which proves

e-separation of the link . O

3.7.4 Connecting losses with finite representative sets to the theory of convex
polyhedra

3.7.4.1 Definitions and preliminaries

Definition 24 (Closed halfspace). A closed halfspace is a set of the form H' b = {z € RY |

(w

(z,w) > b} for any (w,b) € R% x R.

Definition 25 (Hyperplane). A hyperplane is a set of the form H, ) = {z € R* | (z,w) = b} for

any (w,b) € R? x R.

Jr

Observe that H,; = 0H * meaning the hyperplane H(, ) is the boundary of H (w,b)"

(w,b)’
Thus, for any halfspace H*, we have that H* is one of the two halfspaces corresponding to the

hyperplane 0H = H.

Definition 26 (Polyhedron halfspace representation). A polyhedron P is an intersection of a finite

set of closed halfspaces H presented in the form P = NH.
Observe that by the halfspace representation, a polyhedron need not be bounded.

Definition 27 (Valid, Supports). A halfspace H" is valid for P if P C H'. A hyperplane H
supports the polyhedron P if (i) P C H™ for a halfspace HT with H = OH™, and (ii)H N OP # (.

Moreover, H supports P at x if x € HNOP.
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Definition 28 (Face, facet). Let P C R? be a convex polyhedron. A (non-trivial) face F of the
polytope P is any set of the form

F=PnH,

for a hyperplane H supporting P. The dimension of a face F is the dimension of its affine hull

dim(F) := dim(afthull(F)). A face F' with dim(F') = dim(affhull(P)) — 1 is called a facet.

Observe that P is a trivial face of itself, and cannot be written by the above definition.

Throughout, we restrict our focus to non-trivial faces, and omit mentioning non-trivial henceforth.

Claim 1. A face F of the polyhedron P such that F = P N H is nonempty if and only if H is a

supporting hyperplane of P.

It is often useful to understand polyhedra in terms of their halfspace representations and the
set of hyperplanes generating facets of P. To find this set, we must first establish when a halfspace

representation is irredundant for a given polyhedron.

Definition 29 (Gallier [43]). Let P = NH for a finite set of halfspaces H be a polyhedron. We
say that NH is an irredundant decomposition for P (and H is irredundant for P) if P cannot be

expressed as P = NH' for some H' such that |H'| < |H].

Gallier [43] shows that every full-dimensional (i.e. dim(affhull(P)) = d) polyhedron P C R¢
has a unique and irredundant halfspace representation H*, and each H™ € H* generates a facet of

P.

Theorem 12. Given a d-dimensional polyhedron P C R%, (i) there is a unique irredundant and
finite set of closed halfspaces H* such that P = "H*, (ii) {HNP | H" € H*,H = O0H*} is the
set of facets of P, and (iii) for all finite sets of closed halfspaces H such that P = NH, we have

H*CH, .

Proof. Since P is d-dimensional in R?, it therefore has nonempty interior. We claim that P must have

some irredundant representation P = NH for a finite set H. As P has a finite halfspace representation,
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it must have a smallest halfspace representation H*. That is, |H*| = min{NH | P = NH, H finite}.
As the smallest halfspace representation, H* is irredundant; if it was redundant, this would imply
there is a smaller representation H' so that P = NH' and |H'| < |H*|, contradicting H* as the smallest
representation. Gallier [43, Proposition 4.5(i)] then states that the irredundant representation H* is
unique up to ordering, allowing us to conclude (i). Additionally, (ii) is shown by [43, Proposition
4.5(ii)].

It is just left to show (iii). By (i), we know that each H* € H* uniquely determines a facet of
P. Moreover, by (ii), define F':= PN H, where H = OH" and H' € H*, which is a facet of P and
of dimension d — 1. The facet F' can then be defined by d affinely independent points (contained in
P), whose affine hull is H. As halfspaces are uniquely determined, so is the facet ' = PN H. As
polyhedron are uniquely determined by their facets (by Minkowski’s uniqueness theorem, cf., [54]),

we must have HT € H*.

3.7.4.2 Notation

Within this appendix, we use some self-contained notation. We will later consider losses over
a finite set of outcomes ); to make notation consistent, we use Rz throughout as shorthand for
R and let d == Y] + 1.

Fix a set V C RY, and consider the concave function gy :  + inf,ey (v, 2) — §(z | RY). We
denote the hypograph of gy by hypo(gy) = {(z,¢) | ¢ < g(z)} CRY x R.

Given any v € V C RY, define H} := H(J;,—l) = {(z,¢) € RY x R| (v,x) = c}. Similarly, we
denote HJ =H (t 0) for any y € Y; the latter will help us restrict a constructed polyhedron to
the nonnegative orthant. Extending to hyperplanes, we construct H, := H(, 1) and observe that
H, = 0H} for v € RY and define H, := H, 0y so that H, = 0H,. Given a polyhedron P, we
denote the face F' := H, N P. If P is understood from context, we simply denote this face F,.

Finally, given a set V C RY, we let Hy = {H, | v € V} denote the set of halfspaces generated

by V, Hy = {H, |y € V}. If ¥V and Y are understood from context, we may denote H := Hy U Hy.
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3.7.4.3 Finitely generated polyhedron

Throughout, we will work with a (minimizable) function gy generated by a set V C RI of the

following form.

Definition 30. Given a set'V C Rz, define the function gy : ]R{ — Ry by

gv(@) = inf (z,0) — (x| RY)

We first observe that the region generated by the intersection of the H;‘ halfspaces restricts

the hypograph of any gy to be finite only on the nonnegative orthant.
Lemma 14. NHy = RY x R.

Proof. The result follows if we show z € RY <= (z,c) € NHy for all ¢ € R.
— FixanyceR. z € ]RI <= 1w, > 0 for all y € Y. This means that for any y € V,
(z,¢) € {(z,¢) |y > 0} = H}. As y and ¢ were arbitrary, this shows the forward direction.

< (z,¢) € N"Hy implies x, > 0 for all y € Y, and therefore x € RY. O

3.7.4.4 Infinitely generated polyhedra with finite representation

We now contextualize the setting of the previous section. Suppose L : R — Rz is a
minimizable loss function. For z € R{, consider the 1-homogeneous extension of Bayes risk
L, (z) := inf,er(z, L(r)) — §(z | RY), which we assume is polyhedral throughout.

We now consider L(R) C RY and Hiwr) = {H, | v € L(R)}. Observe that L(R) and H g
may be infinitely generated sets. Now let H = Hy U H(r); again, this may be infinitely generated.
We find the existence of a finite V C L(R) such that gy = gr,(r), and proceed to work with such a

V.

Claim 2. Given a minimizable L : R — R{ with polyhedral extended risk L, consider H =

Hy UH ). Then hypo(grr)) = NH. Moreover, there is a finite V C L(R) such that grr) = gy-
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Proof. Observe that = € R%: <~ (z,¢) e NHy. Let z € R{.

(z,¢) € hypo(grr)) == grr)(z) > Definition of hypograph;
= L,(z)>c grr) = L, for z € RY;
< (v,z) >cVYve L(R) by defof L, asthe infimum over v € L(R) of

the inner product with x and minimizable;
<= (v,¢) € Hf Yv e L(R) by definition of each halfspace;

< (z,¢) € MHyr) since true for all v € L(R).

Combining the two equalities (e.g., "H = (NHy) N (NH(r))), we have hypo(gr(r)) = NH. The
existence of a finite V C L(R) follows as L, polyhedral implies hypo(L, ) is a polyhedron, which

has a finite representation by definition. O

This claim allows us to proceed while considering the finite set V rather than the full range

L(R). We now evaluate the structure of gr(z) = gy and its hypograph through V.

3.7.4.5 Structure of gy

We will assume V C RK is finite; if L(R) is finite, then take V = L(R). Otherwise, take
any finite V C L(R) as in Claim 2. Now, we can define hypo(gy) as the intersection of halfspaces

generated by V on the nonnegative orthant.
Claim 3. Given a finite set V C ]R%:, define H = Hy U Hy. Then hypo(gy) = NH.

Proof. (x,c¢) € hypo(gy) <= g(x) —c >0 <= minyep(v,z) —c>0and = € R{, which is true
if and only if (v,z) —c¢ > 0Vv € V and x, > 0 for all y. In turn, this statement holds if and only if

(z,¢) € Hf forallv €V and in H forall y € Y, so (z,c) € NH. O

We proceed with some observations about facets and dimension of hypo(gy) in order to finite

the smallest halfspace representation for grgr) = gy.

Lemma 15. Given a finite, nonempty set V C R{, hypo(gy) is d-dimensional.
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Proof. Since gy is nonnegative on R}i, hypo(gy) therefore contains {(z,¢c) | x € R{, ¢ < 0}, which

is (|| + 1)-dimensional. Recall d = (|| + 1). O

Lemma 15 allows us to apply Theorem 12 to observe a unique set of halfspaces H* generating

hypo(gy).

Lemma 16. Given a finite set V C Rz, define H = Hy U Hy. There is some unique H* C H
such that hypo(gy) = NH*. Moreover, for each HT € H* and H such that H = OH™, the face

F = hypo(gy) N H is a facet.

Proof. Since hypo(gy) is full-dimensional by Lemma 15, this follows immediately from Theorem 12(i)

and (iii). O

We now show that the set Hy is contained in H* so that we can separate the facets generated

by H* into a partition of vertical and non-vertical facets of hypo(gy).

Lemma 17. Given a finite set V C RY, consider the unique finite set H* as given by Lemma 16.

Hy CH".

Proof. If there was a y € Y such that HS = {(z,¢) | z, > 0} was not in H*, then we would
either have some ¢; > 0 such that {(z,c) | xy > ¢1} € H*, or we have a point = such that z, < 0
but g(x) > —oo. The first cannot happen as we take gy is finite at = e, € R}i and is concave.
Moreover, the second cannot be true by construction of gy since V is finite including the 0 — oo

indicator on R{. O

Corollary 6. Suppose we are given a finite set V C R{, and consider the unique irredundant set
H* given by Lemma 16. There is a unique finite set V* C Rﬁ such that H* = Hy U Hy=. Moreover,

F, is a facet of hypo(gy) for each v € V*.

Proof. Since hypo(gy) is full-dimensional, the facets of hypo(gy) are uniquely determined by the
hyperplanes H such that H = 0H+ and H* = {H "} by Lemma 16. Any facet must then be some

intersection of an H, Nhypo(gy) or H, Nhypo(gy). Consider Hy« := H*\ Hy, and V* the unique set
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generating Hy«, since Hy C H* by Lemma 17. (V* is unique as halfspaces are uniquely determined.)

Moreover, H, € Hy~ C H* generates the facet F, of hypo(gy) by Lemma 16. O

Corollary 7. LetV C R{ be a finite set, and V* the unique finite set from Corollary 6 such that

H* =Hy UHy«. Then V* C V.
Proof. Hy UHy= =H* by Corollary 6, and H* CH = Hy UHy by Lemma 17, ergo V* C V. [

Thus, we will introduce our first assumption for the existence of V* given a finite V C R{.
We now show that we can equivalently construct gy through the unique finite set V* instead

of the given set of vectors V, and in turn, loss vectors L(R).

Lemma 18. Given a finite set V C R% consider V* C V as in Corollary 6. Then gy(z) =

minvGV* <’U,$> - 5(1‘ ’ R¥> = gv+ (J;)

Proof. The result holds if hypo(gy) = hypo(gy+). By construction, hypo(gy) = N(Hy U Hy) =
NH* = N(Hy UHy-) = {(x,c) € R{ xR | (v*,z) > ¢ for all v* € V*} where the first equality follows

as H* C H. This means gy can be written as gy(z) = min,ep« (v, z) — §(x | ]RJJZ) = gy~ (x). O

Corollary 8. Given minimizable L : R — ]RX such that L is polyhedral, there exists a (unique)

finite V* C L(R) such that gy = gy« and hypo(grr)) = hypo(gy+) = N(Hy« UHy) is irredundant.
This paves the way for our primary assumption for the rest of this appendix.

Assumption 2. L : R — Rz is a minimizable loss function such that L, = gr,(r) is polyhedral. V C
L(R) is a finite set such that gy = grgy. Finally, V* €V C L(R) is the (unique) finite irredundant
set such that grry = gv = gy+ and hypo(gr(r)) = hypo(gy) = hypo(gy~) = N(Hy+ UHy), the last

of which is irredundant.

With this assumption in hand, we can show a few more statements involving V* and how
it relates to V. For intuition, the construction of V* will be helpful to consider as a minimum

representative set in the proof of Lemma 5.
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Claim 4. Given L,V,V* satisfying Assumption 2, there is a finite set R* C R such that L(R*) = V*

(without duplicates).
Proof. This follows immediately from the Assumption 2 as V* C L(R). O

Claim 5. Given L,V,V* satisfying Assumption 2, for all x € ]Rz, there exists v* € V* such that

H« supports hypo(gy) at (z,gy(z)).

Proof. By Assumption 2, we have gy(x) = gy«(x) = infyep«(v,2) = min,ep«(v,z) for z € Rz.
In particular, consider a normal v* € argmin, (v, x); we claim that the hyperplane H,» such
that H,~ = OH,. supports hypo(gy) at (z,g(x)). First, hypo(gy) C H.. by definition of hypo(gy)
as the intersection of halfspaces including H.. Thus, it is just left to show that (x, (v*,x)) €
H,« N hypo(gy). By definition of gy, we have gy(z) = gy=(x) = (v*,z), so (x,g9p(x)) € Hy-.

Moreover, (x, gy(z)) € hypo(gy) = {(z,¢) | gv(x) > ¢} trivially since gy(z) > gy(z). O

3.7.4.6 Projecting from Ri to Rz

We now define the projection 7 : RY x R — RY, (x,¢) ~ x. The projected faces generated by

V* cover the nonnegative orthant.

Corollary 9. Consider L,V,V* satisfying Assumption 2. For each v € V*, let F,, = nypo(gv*) =

H, Nhypo(gy+). Then Uyey-m(F,) = RY.
Moreover, the projection m preserves dimension of faces.

Claim 6. Consider L,V,V* satisfying Assumption 2. For all v € L(R), define F, as the face of gy

generated by v € Rz. Then dim(F,) = dim(w(F)).

Proof. Recall from Definition 28 that the dimension of a polytope to be the dimension of its affine
hull. Suppose we are given |Y| + 1 affinely independent vectors z; in F;,. We claim their projections
{m(2i)} are affinely independent. Let a1 + ...+ ajyj;1 = 0, such that 3>, a;m(2;) = 0. We want to

conclude that we must have a; = 0 for all 4, meaning they are affinely independent.
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Observe z; = (zj,(v,x;)) for all i; therefore, if z; € F, (e.g., F, supports hypo(gy) at

(z, (v,z))), then we also have z; € H,. So 0 =), a;7(z;) = Y_; a;z;. Moreover, the sum >, a;z; =
S ai(xi, (v, 2)) = (X aszi, (v, Y axg)) = (0,0) = 0. Thus, since a; = 0 for all , the set {2} is

affinely independent and the dimensions of the affine hulls are therefore equal. O

Since we preserve the dimension of these projected spaces, we can now study equivalence of

projected faces of the hypograph and regions of support of gy for any v € L(R).

Lemma 19. Given L,V,V* satisfying Assumption 2, fiv x € R}:. For any v € L(R), the following

are equivalent:
(1) (z, gy(z)) € FPelov),

(2) <U7 1:> = gV(x)"
(3) v € argmin, (v, z); and

(1) z € 7.r(};glypo(gv)) '

Proof. For v € L(R), define F, := Fglypo(g\/)‘

1) (z,9@) € F < (z,9v(x)) € {(2',¢) € hypo(gy) | (v,2') = c}

= (02) = () ®)

— (v,z) = 11}1%3(1/,:3)

<= v € argmin(v’, x) . (3)
v'eV

This covers 1 <— 2 «<— 3.

For 1 <= 4, the forward implication follows trivially by applying the definition of the
projection 7. For the reverse implication, consider some = € 7(F,). There must be a ¢ € R so
that (z,c¢) € F,. Expanding, this is actually saying (z,c) € {(2/,) € hypo(gy) | (v,2’) = c}.
In particular, this is true when ¢ = (v, z), which defines a face of hypo(gy) at x if any only if

(v,x) = gy(x). Therefore, we have (z, gy(x)) € F,. O

Taking L, V,V* as in Assumption 2 and a face of hypo(gy), Fy» = Hy+ Nhypo(gy) for v* € V*,

the projection 7 preserves full-dimensionality.
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Claim 7. Given L,V,V* satisfying Assumption 2, define F, := Fi‘yp‘)(g” = H, Nhypo(gy). For all

v e V* w(F,) is full dimensional in R{.

Proof. By Corollary 6, F, is a facet of hypo(gy«) = hypo(gy) in Ri, meaning it is (d — 1)-
dimensional. Moreover, Claim 6 states that the dimension of F,, is preserved for each v € V*. Thus,

dim(F,) = dim(r(F,)) = |V 0

Now we can observe a set of normals V' generates faces of gy whose projections cover R{ if
and only if the set contains V*. This will translate to a set being representative for a loss if and

only if it contains a finite minimum representative set (in settings where one exists.)

Claim 8. Consider L,V,V* satisfying Assumption 2. For V' C L(R), we have U,cypm(F,) =

RY < V*CV.

Proof. For any v € V, define F,, := Fhvpolov) H, Nhypo(gy).
( =) For contraposition, suppose V* € V'. Then Jv € V*\ V'. Observe that V* is unique

and irredundant (by assumption) and W(Fgl ypo(g"))

is full-dimensional in ]RX by Claim 7. Moreover,
m(Fy) & Uyeym(F,), which implies Uyeyrmr(Fy) # Uyrey-m(Fypr) = RY.

( < ) Since V* C V', we immediately have Uyeyp+m(F,) C Uyeypm(F,y). Moreover,
Upey=m(Fy) = ]RX by Corollary 9, so ]RX C Uyeyn(Fy). As gy is only finite on ]RX by con-

struction, equality follows.

O

Fﬁypc(gv)}vev, for some V' will cover R{ if and

We now claim that a set of projected faces {
only if V* CV'. Given L, V, V* satisfying Assumption 2, denote Ag := {7 (F,) | v € S} as the set of

projected facets generated by V*.

Claim 9. Consider L,V,V* satisfying Assumption 2, and R' C R with V' := L(R'). We have

UUEV’T‘-(FU) = R{ <~ Av* - AV’-

Proof. = The result follows if V* C V', which follows from the forward implication of Claim 8.

Explicitly, for all v € V* we also have v € V', so, ©(F,) € Ay N Ay = Ay
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— I {n(F,) | v eV} C{n(F,) |ve LR}, then U{n(F,) | v € V*} C Upey(F,). By
Corollary 9, we have U{w(F,) | v € V*} = R{, S0 R{ C Upeyrm(Fy). The other direction of subset

inequality following from hypo(gy) being finite only on ]RI. O

Claim 10. Given L,V satisfying Assumption 2, if some H, € H supports hypo(gy), then F, :=

H, Nhypo(gy) is a nonempty face of hypo(gy), and thus a subset of a facet.

Proof. Since H, supports hypo(gy), we know that hypo(gy) C H;" and F is not empty. Moreover,
H,f is valid, and we have F,, = H, Nhypo(gy) is a face of hypo(gy) by definition.
Moreover, the faces of hypo(gy) are all convex polyhedra as hypo(gy) is a polyhedron. Any

face of hypo(gy) is must then be a lower-dimensional face of a facet, and therefore a subset. O

Claim 11. Consider L,V,V* satisfying Assumption 2. For any v € V, the face F, C Fy« for some

v* e V*.

Proof. As hypo(gy+) is a polyhedron, each of its faces are convex polyhedra, and is also a face of
some facet of hypo(gy~); these facets are defined by V* and Y via Corollary 6.

It then suffices to show that if F;, := H, Nhypo(gy) is a face of the facet F, := H, Nhypo(gy)
for some y € ), then it must also be a face of F,« for a v € V*; it suffices to show F, is not
a facet, and thus F, # F,. Recall from the definition of a face that F, = hypo(gy) N H, and
Fy = hypo(gy) N Hy. As facets of a polyhedron are (uniquely) determined by hyperplanes and F), is
a facet, then if F, is a facet we must have v € V*, and constructed V* such that Hy« N Hy = 0.
Thus, F, # F, by unique determination of facets. If F;, is not a facet of hypo(gy), then F, # F), is
immediate as F, is a facet of hypo(gy). In both cases, we have F, # F,, and the result follows.

O

Corollary 10. Consider L,V,V* satisfying Assumption 2, and F, := H, Nhypo(gy) be a face of

hypo(gy). For v,v* such that F,, C Fy« and v* € V*, w(F,) C w(Fy*).

Now, we can conclude that projected facets generated by V contain all other projected faces

of hypo(gy).
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Corollary 11. Consider L,V,V* satisfying Assumption 2. For v € L(R), let F,, := H, Nhypo(gy)

be a face of hypo(gy). For any v € V, there is a v* € V* such that w(F,) C w(Fy+).

Proof. This is exactly Claim 11 and Corollary 10 chained together. O

3.7.4.7 Translating to properties: projecting from Rz to Ay

Let fy : RY — R, U{—oc} be a polyhedral concave function with dom(fy) = Ay.
Claim 12. There is some finite set V C RY such that fy(p) = minyey(p,v) — 8(p | Ay).

Proof. We will think of fy as defined fy : RY — R, U {—oc} with dom(fy) = Ay. For p € Ay,
we know >, p; = 1, and can write any inner product (p,b) — 5 = (p,b) — (p, 1) = (p,b — f1). If
p € Ay, then fy(p) = —oo and inner products are not used to compute fy. Moreover, since fy is

polyhedral, it is finitely generated [77, Proposition 19.1.2] and can be written

fyv(p) = min((p,b1) — B1,...,{p,br) — Br) —d(p | Ay)

=min((p,br — B11),....,(p, by — Bx1)) —é(p | Ay) :

This allows us to project gy from Rz to the Ay.

Lemma 20. Consider L,V,V* satisfying Assumption 2. For all polyhedral concave fy : Rﬁ —
R4 U{—o0} with dom(fy) = Ay, the polyhedral concave function gy : R}i — Ry with dom(gy) = R}:

matches fy(p) = gy(p) for all p € Ay.

Given the function fy, we consider gy to be its extension and L such that L, = gy and
L = fy. Moreover, define the function 6(v) = {p € Ay | (v,p) = fv(p)} as the level sets of the loss

vector v € V.

Claim 13. Consider L,V,V* satisfying Assumption 2. Then L is polyhedral (on the simplex) and

fv = L. Moreover, fy(p) = gy(p) for all p € Ay.
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Claim 14. Consider L,V,V* as in Assumption 2. For all v € V, consider the face F, of hypo(gy).

Then 6(v) = w(F,) N Ay.

Proof. Fix p € Ay.

pE€O(v) < (v,p) = fr(p) Definition of 6
< (v,p) = min(v', p) fv = gv on Ay (Cor. 20)
v'e

<= v € argmin{v’, p)
v’ ey

<~ pen(lky). Lemma 19

3.7.4.8 Moving from Ay to Rz

Now that we have translated from Ri to Rﬁ in § 3.7.4.6 and from Rz to Ay in § 3.7.4.7, we

take some final steps to prove Lemma 5 by showing equivalences from Ay to ]RX.

Lemma 21. Consider L,V,V* satisfying Assumption 2. For all r € R with v = L(r), I', = 0(v) =

W(Fv) N Ay.
Proof. Let us rewrite

[, ={peAy|reargmin(L(r'),p)}
r'eR

={p€ Ay |v € argmin(,p)}
v' ey

={pely|(vp = ?Eig<v’,p>}

={pelAy|(v,p=fp}

=0(v) .

The rest of the result follows from Claim 14.
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Lemma 22. Consider L,V,V* satisfying Assumption 2. Then gy(x) = min,ecy= (v, ) is (positively)

1-homogeneous.

Proof. If x & R{, then cg(z) = —oo = g(cx) for any ¢ > 0. If z € R{, then we have g(cx) =

min, ey (v, cx) = cmingyep« (v, x) = cg(x) for any ¢ > 0 by linearity of the inner product. O

Every minimizable loss L elicits a unique property I' := propp[L], and we can define the

extended level set Ty := {x € RY | (L(r),z) = L, (x)}.

Lemma 23. Consider L : R — RK,V, V* satisfying Assumption 2. For any r € R and ¢ > 0, if

pel,, thencpeT,.
Proof. Fix r € R and ¢ > 0. We have

pel, ={peAy|recarg n;in(L(r'),p'ﬂ Definition of level set
r'e

={p' € Ay | v € argmin(v/, p')}

V' EL(R)

={p e Ay | {v,p) = min (', p)} L minimizable
V' EL(R)

={p' € Ay | (v,p) = gv(0")} Assumption 2: grr) = gy

={p' € Ay | c{v,p') = cgv(p)}
={p €Dy | {v,p) = gv(cp')} Lemma 22
= cpe{zeRY | (v,z) =gy(x)}

_ T,
O]

Lemma 24. Consider L : R — R{, V,V* satisfying Assumption 2. For any v € L(R), define the

face F, of hypo(gy). For any r € R with v = L(r), T, = 7(F,).
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Proof.

T, ={z €RY | (L(r),z) = L ()} Definition of T,
= {z e RY | (L(r),z) = gv(2)} Assumption 2: L, (z) = gy(z)
= {z e RY | (v,2) = gv(2)} v=L(r)
= 7(F,) Since Fy, = {(z, gv(v)) | (v,2) = gv(x)}

O]

Claim 15. Consider L : R — Rf_, V,V* satisfying Assumption 2. For any v € L(R), denote the
face F, := H, Nhypo(gy). A set R’ C R with V' := L(R’) is representative for L if and only if

Upevrm(Fy) = RY.

Proof. = This proof follows from three lemmas: first, we observe that g is 1-homogeneous via
Lemma 22. Then we extend the notion of a level set I',. to the nonnegative orthant T,, and show
that any scalar transformation of a distribution in the level set is contained in the same (extended)
level set via Lemma 23. Finally, we show the extended level set is exactly the projection 7 (F) in
Lemma 24. As a corollary, we chain the results to observe U,cr/ Ty = Ay = Upcr/ T, = R}: =
UperrnT(Fy) = R{, yielding the forward implication.

< Fixpe Ay C R{. By the assumption, there is a v € V' such that p € 7(F,). By
Lemma 21, we have p € n(F,) N Ay =T, for the r € R’ such that v = L(r). As this is true for all

p € Ay, we have R’ representative.

3.7.4.9 Proving Lemma 5
We now proceed with a few final lemmas that ultimately yield the proof of Lemma 5.

Lemma 25. Consider L : R — R{,V,V* satisfying Assumption 2. A finite set R’ C R with

V' = L(R') is representative if and only if V* C V.
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Proof. Chain Claim 15 and Claim 8 to yield the result. O

Lemma 26. Consider L : R — R{,v, V* satisfying Assumption 2. A finite set R C R with

V' = L(R') is representative if and only if Oy C {0(v) | v € V'}.
Proof. Chain Claim 15 and Claim 9 to yield the result. O

Define Oy« := {0(v) | v € V*}; it follows that this set is exactly the set of level sets of the

property elicited by L. Moreover, let R* be the finite set of reports given by Claim 4.

Corollary 12. Consider L,V,V* satisfying Assumption 2, and R* such that V* = L(R*) as in

Claim 4. Moreover, suppose L elicits I'. Oy« ={[', | r € R*}.

Lemma 27. Consider L : R — RX,V, V* satisfying Assumption 2. Moreover, let I' := propp[L].

Oy- = {I, | r € R, dim(T',) = V| — 1}.

Proof. From Claim 7, we know Ay~ is exactly the set of full-dimensional level sets in ]RX. Each
element of Ay« is w(F,) for some v € V*. Take r € R* so that v = L(r). By Lemma 21, we have

O(v) =T, = w(F,) N Ay is full-dimensional relative to the simplex. The result follows. O

Lemma 28. Consider L : R — R{, V,V* satisfying Assumption 2, and R* C R the set such that
V* = L(R*) as in Claim 4. Moreover, consider I' := propp[L]. For any r € R, there ezists a

v* € V* such that T, C 6(v*).

Proof. Take v = L(r). By Corollary 11, there is a v* € V* C V such that 7(F,) C w(F,«). Therefore,
m(Fy) NAy C w(Fy+) N Ay. We know 6(v) = 7(F,) N Ay and similarly for #(v*) by Lemma 21. The

result follows. O

Now this brings us to Lemma 5. The framework in this appendix cues up this proof: any loss
L satistying the assumptions of Lemma 5 has some gr,z) = L, as in this section that we can work

with.
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Lemma 5. Let L : R — R}: be a minimizable loss with a polyhedral Bayes risk L. Then L has a
finite representative set. Furthermore, letting I' = Propa,, [L], there exist finite sets V C R{ and

© = {0, C Ay | v € V}, both uniquely determined by L alone, such that
(1) A set R' C R is representative if and only if V C L(R).
(2) A set R' C R is minimum representative if and only if L(R') = V.
(3) A set R' C R is representative if and only if © C {T, | r € R'}.
(4) A set R' C R is minimum representative if and only if {T'y |r € R'} = ©.
(5) Every representative set for L contains a minimum representative set for L.
(6) The set of full-dimensional level sets of T is exactly ©.
(7) For any r € R, there exists @ € O such that T’y C 0.
(8) L tightly embeds £ : R' — ]R{ if and only if £ is injective and {(R') = V.

Proof. Consider L = fy for a finite set V by Claim 12. There is a polyhedral concave function gy
on R{ matching fy on Ay by Corollary 20. Moreover, consider gy = L., and observe that L,
matches L on Ay as well. By Corollary 6, we then have a finite set V* of smallest cardinality such
that fy = fy« and gy = gy+. Consider R* C R such that V* = L(R*) as in Claim 4. First, observe
that R* is representative for L as a corollary of Claim 15. Moreover, consider the following set of
level sets of fy=, Oy = {0(v) | v € V*}.

Now that we have the preliminaries, consider the itemized statements. For fy«, Lemma 25 is
exactly statement (1). This immediately implies statement (2). Moreover, Lemma 26 is exactly
statement (3), and again statement (4) immediately follows. Statement (5) is a corollary of the
existence of a finite representative set, as shown in Claim 4. Statement (6) is exactly Lemma 27.
Statement (7) is exactly Lemma 28. Finally, Statement (8) follows as a corollary of statement (2)

and Corollary 2. O



Chapter 4

Convex Elicitation of Continuous Properties

4.1 Introduction

In Table 2.1, we consider four types of problems, depending on the continuity and form of
the prediction task at hand: this chapter gives necessary and sufficient conditions on a case within
Quadrant 4, in which one is given a (nowhere-locally-constant) continuous statistic they wish to
estimate.

A central thread of elicitation literature, weaving between the statistics, economics, and
machine learning communities, asks which continuous real-valued properties are elicitable, and which
loss functions elicit them. Building on earlier work of Osband [67] and Lambert [55], Steinwart
et al. [83] show that a property is elicitable if and only if it is identifiable, a concept introduced by
Osband which says that the set of distributions sharing the same property value can be described
by a set of linear constraints. Moreover, these papers give characterizations of the loss functions
eliciting these identifiable properties, showing that every loss can be written as the integral of a
positive-weighted identification function.

This chapter studies the convex elicitability of continuous estimation problems in the finite-
outcome setting. Surprisingly, we find that, under somewhat mild smoothness assumptions, every
elicitable real-valued property is convex elicitable (Theorem 14). The proof proceeds by observing
that elicitability is equivalent to a condition called identifiability, and pinpoints a few key attributes
of identification functions. We proceed to solve the following abstract problem: given a set of

functions F C {f : R — R}, when does there exist a weight function A : R — Ry making \f
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increasing over the (convex) report space R for all f € F? We give a constructive solution to this
problem under certain conditions, and show that identification functions happen to satisfy these
conditions.

Thi chapter is heavily based on the work of Finocchiaro and Frongillo [26], published at

NeurIPS 2018.

4.2 Setting and Background

In property elicitation, we aim to learn some distributional property by minimizing a loss
function. For continuous properties, a central notion in property elicitation is that of identifiability,
where the level sets 'y := {p € P | r € I'(p)} can be expressed by an affine constraint. Throughout
this chapter, we assume properties I' are single-valued, meaning |I'(p)| = 1 for all p € P. In this

single-valued setting, we omit set-notation and write I'(p) = r instead of T'(p) = {r}.

Definition 31. Let an elicitable property ' : P — R be given, where R = I'(P). A function

V:R xY — R identifies I if
Eyop [V Y)] =0 = 1 =T(p) , (4.1)

for allr € R and p € P, where R is the interior of R. In this case we say I is identifiable. We say

V' is oriented if we additionally have Ey ., [V (r,Y)] >0 <= r > T(p), for all r € R and p € P.

Note that by the terminology of Steinwart et al. [83], an identification function satisfying
eq. (4.1) on all of R is called strong, and otherwise it must hold almost everywhere.

We can loosely think of an identification function as a derivative of a loss; if L is differentiable
and elicits I", then roughly speaking, we expect %EYNPL(T, Y) =0 <= TI'(p) =r. Thus, modifying
the identification function V' multiplicatively allows one to change the corresponding loss L while
keeping the minimizer (property value) the same.

In this chapter, we assume our properties possess two important qualities: continuity, and

being nowhere-locally-constant.
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Definition 32 (Lambert [55]). A continuous property I' : P — R is nowhere-locally-constant if

there does not exist any open neighborbood U of P such that T'(p) =r for allp € U.

Intuitively, restricting to nowhere-locally-constant properties is merely to ease bookkeeping,
as one could always collapse different report values together afterwards.

It is known that for continuous, nowhere-locally-constant, real-valued properties, identifiability
is equivalent to elicitability. In this chapter, we show that under slightly stronger assumptions,

identifiability is equivalent to convez elicitability.

4.2.1 Relevant prior work

While Savage [79] studied the elicitation of expected values, the literature on the elicitation
of general properties began with Osband [67], who gave several important results. One of Osband’s
observations is that the level sets I, = {p € P | I'(p) = r} of an elicitable property I" must be
convex [67, Proposition 2.5]. Osband’s principle states that (under a mild regularity assumption)
every loss function eliciting a given property can be written as the integral of a weighted identification
function [67, Theorem 2.1], giving the rough “derivative” connection mentioned above. Osband also
gave several other results, such as the separability of loss functions jointly eliciting quantiles.

Independent of Osband, Lambert [55], Lambert and Shoham [56], Lambert et al. [57] provide
a geometric characterization of both continuous and finite properties when the set of outcomes ) is
finite. Lambert represents the identification function as a vector and relates finite-valued properties
to power diagrams in computational geometry. In turn, Lambert rediscovered several results of
Osband for the real-valued case, such as convexity of level sets and a one-dimensional version of

Osband’s principle.

Theorem 13 (Lambert [55, Theorem 5]). Let I' : P — R be a continuous, nowhere-locally-constant
property. If the level sets {p € P : T'(p) = r} are convex, then ' is elicitable, and has a continuous,

bounded, and oriented identification function. Conversely, if I' is elicitable, its level sets are convex.

Steinwart et al. [83] extend this result to the case of infinite ). None of the above-mentioned
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papers characterize when the loss eliciting a given property is convez.

This chapter studies the direct elicitibility of continuous properties. While convex losses are
well-known for several continuous properties of interest, including the mean and other expected
values (squared loss), ratios of expectations (weighted squared loss), and the median and other
quantiles (pinball loss), to our knowledge, there were no previous results on the direct convex

elicitation of general continuous properties.

4.3 Continuous properties are convex elicitable iff they are elicitable

We will show that, under mild conditions, every elicitable real-valued property is also convex
elicitable. Let us first give some intuition why one might suspect this statement to be true. From a
geometric perspective, the level sets I, = {p € P | I'(p) = r} of continuous elicitable properties are
hyperplanes intersected with P. As one varies r, the level sets may be locally parallel, in which
case the property is locally a link of a linear property (expected value), or the level sets may not be
parallel, in which case the property locally resembles a link of a ratio of expectations. In fact, the
second case also covers the first, so we can say that, roughly speaking, every continuous property
looks locally like a ratio of expectations. The following proposition states that if the property can
actually be written as a finite piecewise ratio of expectations, it is convex elicitable. Hence, taking
the limit as one approximates a given property better and better by ratios of expectations, one may

suspect that indeed every continuous property is convex elicitable.
Proposition 10. Continuous piecewise ratio-of-expectation properties are convex elicitable.

Proof. First, we formalize the statement. Recall that ) is a finite set. Let ¢; : J — R and
i : Y = Ry be arbitrary for i = 1,...,k, and let v;(p) := Ey~p¢i(Y)/Eyp1;(Y). Assume that
we have ag < --- < aj such that for all p € P, there is a unique i € {1,...,k} such that either
vi—1(p) € (ai—1,a;) or v;—1(p) = vi(p) = a;—1. Call this i(p), and by extension i(r) where r = ~;(p)
for this i. We will show that I'(p) := ;¢ (p) is convex elicitable with respect to the full probability

simplex P = A(Y).
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Observe that by construction, for each i € {1,...,k — 1} the level sets for a; coincide:
Si={p:T(p)=a;} ={p:vp) =a;} ={p:vi-1(p) = a;}. Moreover, for all such i, these level sets
are full-dimensional in P, i.e., there are (n — 2)-dimensional affine sets which are the intersection
of a hyperplane and P. Now let Vi(r,y) = ¥;(y)r — ¢;(y), which identifies 7;, and is strictly
increasing in r as ¥;(y) > 0 for all y. We now see that the hyperplane which is the span of S; in R™
is orthogonal to the vectors V;_1(a;,-) € R™ and V;(a;,-) € R", by the definition of identifiability.
We conclude that there is some coefficient «;—1 such that V;_i(a;,y) = a;—1Vi(a;,y) for all y € Y.

i(r)

(In fact, a;—1 > 0, as the coefficient of r must be positive.) We then construct 3;,) = [] j=o a;j and

write the identification as V(r,y) = B Vi) (1, 9)- O

Moving now to the formal result, let Z C R be an interval. Our main technical ingredient
shows, given a collection F of functions f : Z — R satisfying certain conditions, how to construct a
multiplier A : Z — Ry making Af strictly increasing on 7 for all f € F. In our proof, the family
F will be the set of identification functions {V'(-,y)}ycy, and X will play the role of the weight
function in previous work showing that any loss of the form L(r,y) = [ A(z)V (x,y)dx elicits " [83,
Theorem 5]. As AV (-,y) is increasing for all y € Y, the loss L will be convex.

We give three conditions below which are only mildly stronger than what the literature shows
to be true of the desired properties. We begin with our three conditions; the first we will assume,

and the second and third we will prove hold for any oriented identification function.

Condition 2. Every f : T — R € F is continuous on Zo', and continuously differentiable on 7
except on a finite set Sy C Z. When f is differentiable, %f(ac) is finite. Additionally, if x € 7 and

f(z) =0, then for all z in some open neighborhood U of x, d% (z) > 0 whenever f is differentiable.

Condition 3. Every f € F is bounded and has at most one zero xy € 7 so that if xy exists,
f(x) <0 forx <xf and f(x) >0 for x > xy¢. If f does not have a zero on Z, then either f(xz) <0

or f(x) >0 for all x € 7. Forallz € f, at least one function f € F is nonzero at x.
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Condition 4. For all f,g € F and all open subintervals T' C T such that f>0>g onT, the

function % is strictly increasing on T'.

Proposition 11. If F satisfies Condition 1, 2, and 3, then there exists a function A : Z — R4 so

that \f is increasing over for every f € F.
With this tool in hand, we are ready to state our main result, with proof deferred to § 4.7.

Theorem 14. For P = A(Y), let T': P — R be a continuous, nowhere-locally-constant property
which is identified by a bounded and oriented V. : R x Y — R. If F = {V(-,y)}yey satisfies

Condition 1, then I' is convex elicitable.

Recall that this chapter focuses on finite ). The argument establishing Condition 3 immediately
extends to infinite outcome spaces. Beginning with pg, p; being arbitrary distributions, I'(pg) # I'(p1),
one simply observes that V(y(«),po)/V (v(a),p1) = 1 —1/a by the same logic. The central challenge
to extending Theorem 14 therefore lies in the proof of Proposition 11.

Loosely speaking, when combining Theorem 14 with the existing literature, we conclude that

every “nice” elicitable property is additionally convex elicitable.

Corollary 13. Let P = A()) be the probability simplex over n outcomes, and let T : P — R be a

nowhere-locally-constant property with a bounded and nowhere vanishing first derivative, a bounded

L' Then the following are equivalent:

second derivative, and a differentiable right inverse.
(1) For all v € R, the level set {p € P | T'(p) =r} is convex.
(2) T is quasi-monotonic.

(8) T is identifiable and has a bounded and oriented identification function.

(4) T is elicitable.

! We may identify P with {v € Riylfl : 2\13:1\171 v; < 1} so that the derivatives are well defined. In the proof, for
ease of notation, we will still write dot products in RPI
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(5) There exists a non-negative, measurable, locally Lipschitz continuous loss function eliciting

r.
(6) T is convex elicitable.

Proof. We essentially reduce to a similar result of Steinwart et al. [83, Corollary 9]. First, note that
the definition of nowhere-locally-constant from Lambert et al. [57] coincides with the definition of
Steinwart et al. [83, Definition 4] in finite dimensions. Second, as our assumptions are stronger than
theirs, the equivalence of the first five conditions follows. As convex elicitability implies convex level
sets (cf. Lambert [55, Theorem 5], which follows even if L can be infinite on the boundary of R), it
then suffices to show that identifiability implies convex elicitability.

By standard arguments, the convexity of the level sets {p : I'(p) = r} for r € R imply that
each level set must be a hyperplane intersected with P. (See e.g. Theorem 1 of [57].) Letting p be

the right inverse of T, so that I'(p(r)) = r for all » € R, we may define

V(r,y) = Vil (6y —p(r)) , (4.2)

a form taken from Frongillo and Kash [38, Proposition 18].

Now for any p with I'(p) = r, as the level set is a hyperplane intersected with P, we must
have I'(ap + (1 — a)p(r)) = r, and we conclude V,yI'- (p — p(r)) = 0. (Simply take the derivative
with respect to a.) Thus, as VI' # 0, the vector V. [' — V5[ p(r) 1 defines the same hyperplane
as {p:I'(p) =r}, and thus V identifies I'. That V is also bounded and oriented follows easily from
our assumptions. As V' has a bounded derivative everywhere by assumption, it satisfies Condition 1,

and convex elicitability then follows from Theorem 14. O

4.4 Sketch of Proposition 11 and Intuition

We now give a sketch of the construction of the weight function A in Proposition 11. See
§ 4.7.2 for the full proof. For the purposes of this section, let us simplify our three conditions as

follows:
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Condition 1. Every f € F is continuously differentiable.
Condition 2. Each f € F has a single zero, and moves from negative to positive.
Condition 3. When f > 0 > g, the ratio g/f is increasing.

Two function case. To begin, let us consider two functions satisfying Conditions 1’, 2’, and
3’, such that f > 0 > g on the interval Z. We wish to find some A : Z — R} making both Af and

Ag strictly increasing. By Condition 3’, we know ¢/ f is increasing on 7. Let us choose \ as follows,

A(r) = (=f(r)g(r) =2 . (4.3)

As —(fg)(r) > 0 for all r € Z, we have A(r) > 0 as well. Moreover, one easily checks that
Af = +/—f/g and A\g = \/—g/f, which are both increasing as monotonic transformations of g/ f.
General case. More generally, we wish to find a A such that for all z € R, %()\f)(:p) > 0.
When f > 0, this constraint is equivalent to % log(Af)(z) > 0, which is in turn equivalent to
—AlogA(z) < 4log f(x). Similarly, if f(z) < 0, then we need —% logA(z) > £ log(—f(z)).
Finally, the case f(x) = 0 follows easily from Condition 2’, as % f(xz) > 0and A > 0. Combining

these constraints, we see that for all f > 0 and all g < 0, we must have

2 log(—g(z)) < —Llog A(z) < Llog f(x) . (4.4)

In order for these constraints to be feasible, we must have % log(—g(z)) < %log f(x) for all
f < 0 < g, which is seen to be equivalent to Condition 3’ after some manipulation.

Perhaps the most natural way to satisfy constraint (4.4) is to simply take the midpoint
between the maximum lower bound m : R — R and minimum upper bound 77 : R — R defined as
follows:

m(z) = —gejr__s:lglgkoﬁlog(—g(fv)) , m(z) = —fefi:?(fxm%log(f(fv)) :

This yields the following construction (where rg € R is arbitrary),

h(z) = % (m(z) + m(x)) , Mz) = exp < / : h(z)dz) , (4.5)
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where one notes h(z) = % log A(x). Provided our three conditions hold, we now have a positive
weight function A satisfying the constraint (4.4), and we conclude that Af is increasing for all f € F.

Let us observe that our general construction in eq. (4.5) really is a generalization of the two-
function case in eq. (4.3). That is, we are primarily concerned with the “most decreasing” and “least
increasing” functions, which allows us to focus on two functions instead of the entire set . When
we only have two functions f > 0 > g, eq. (4.5) reduces to h(z) = —% (% log(—g(z)) + % log f(x)),
whence A(z) = exp (; log(g(fc)f(:v))> T

Hurdles and technicalities. As stated, the above construction has two issues, which
we now briefly identify and describe how our proof circumvents. First, in general our functions f
will pass through 0, possibly making h and therefore A unbounded. Recall that we only needed
to satisfy eq. (4.4), and thus rather than taking the midpoint of the lower and upper bounds as
in eq. (4.5), which will diverge whenever one of the bounds diverges, we can always choose h in a
slightly more clever manner to be closer to the smallest magnitude bound. See the Appendix for
one such construction.

The second problem is that our actual Condition 1 allows for nondifferentiability, which arises
in settings of particular interest, like Proposition 10. Fortunately, in the finite-outcome setting, it
is essentially without loss of generality to consider continuous f € F (see Theorem 13). We can
therefore address the finite nondifferentiabilities using continuity arguments, allowing us to focus on

the set Z, C Z where every f € F is continuously differentiable.

4.5 Examples

To illustrate the constructive nature of Theorem 14, we now give two examples. The first is
the Beta family scoring rule found in Buja et al. [16, §11] and Gneiting and Raftery [46, §3], which
we use to illustrate the construction itself. The second is a simple elicitable property for which the

obvious identification function does not give a convex loss; we show how to convexify it.

1. Beta families. Consider the Beta family of loss functions discussed by Buja et al. [16],

which elicit the mean over outcomes ) = {0, 1}, with R = [0, 1]. After some manipulation, one can
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write the loss and identification function as follows, for any «, 5 > —1,

L) = [ 0= G mnde Ve = (1= e -

While some choices of the parameters yield convex losses, such as « = 5 =0 (log loss) and o = 8 =1
(squared loss), not all do, e.g. a =1/5, 8 = —1/2.

We choose A\(r) = r1/2=%(1 — r)1/?2=8 giving the identification function V'(r,y) = r/2(1 —
7)Y/2(r —y), which is itself in the Beta family with @ = 8 = 1/2. Intergrating V" yields the following

convex loss,

L(r,y) = /0 21— )3z — y)dz = aresin(y/Jy — r]) — \/r(1 1) | (4.6)

also discovered by Buja et al., which serves as a intermediary between log and squared loss.

2. A quadratic property. Let )Y ={1,2,3}, and I'(p) = P—W, where I'(p) = ;1
when pp = 0 for continuity (from L’Hopital’s rule). Here, p, denotes the probability outcome y is
observed. Some of the level sets of " can be seen in Figure 4.2. A very natural choice of identification
function for I' is V(r,1) =r — 1, V(r,2) = $ +r —r2, V(r,3) = r, as one readily verifies. Yet we
see in Figure 4.1(b) that V'(-,2) is not strictly increasing, so the loss given by integrating V' will not
be convex.

The set F = {V(-,y)}yecy satisfies Conditions 1-3, however, and thus we may use our
construction to obtain a positive function A for which L(r,y) = [} A(z)V(z,y)dz elicits T' and
is convex in r. Unfortunately, for this particular example, the construction given in the proof of
Proposition 11 produces a somewhat unwieldy function A. Fortunately, while that constructed A
is guaranteed to make A\ f monotone for every function f in F, it is generally not unique, and in
many cases a simpler choice of A can be found. In particular, our proof shows that any function
h satisfying the criteria of [26, Claim 1] will lead to suitable choice of A\; among these criteria are
that h(r) = —d% log A(7) must lie between certain lower and upper bounds (solid orange and blue

in Figure 4.3) for all . We illustrate this example construction in Figure 4.3; for the case of our

quadratic property, the choice —d% log A(1) = h(r) = 4r — 1 (shown as dashed blue) suffices, yielding
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a simple A\(r) = exp(2r? — 7). This choice of \ gives

M)V (r, 1) = exp(2r® —7)(r — 1)
AMV(r,2) = exp(27"2 —r)((1/2) +r— 7’2)

M)V (r,3) = rexp(2r? — ) ,
which we can integrate to obtain a convex loss.

4.6 Chapter conclusion

We have shown that all real-valued properties over finite outcomes, which are identified by a
mostly-smooth continuous identification function, are convex elicitable. Beyond natural relevance
to machine learning, and statistical estimation more broadly, these results bring insights into the
area of information elicitation. For example, a generalization of a common prediction market
framework, the Scoring Rule Market, is well-defined for any loss function [41, 57]. Yet it is not clear
whether practical markets exist for any elicitable property. Among the practical considerations
are axioms such as Tractable Trading (TT), which states that participants can compute their
optimal trade/action under a budget [3], and Bounded Trader Budget (BTB), which states that
traders with arbitrarily small budgets can still fruitfully participate in the market [41]. Our results
imply that essentially every continuous real-valued elicitable property over finite outcomes has a
market mechanism which satisfies these axioms. There are likely also implications for wagering

mechanisms [58] and forecasting competitions [90], among other settings in information elicitation.

4.6.1 Future work

Infinite outcomes. A challenging but important extension would be to allow infinite ), for
example, Y = [0,1] C R. As discussed following Theorem 14, many pieces of our argument extend
immediately, such as the argument establishing Condition 3. We believe the key hurdle to such
an extension will be in Proposition 11, as several quantities become harder to control. As one

example, function A used to obtain A might be constructed as the midpoint of some upper and lower
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bounds, which may not be attained in the infinite case. Extending to infinite outcomes requires
the relaxation of our continuity assumption, as many properties of interest have discontinuous
identification functions in the infinite-outcome space, like the median.

Vector-valued properties.  Finally, we would like to extend our construction to vector-valued
properties I' : P — RF. In light of our results, this question is only interesting for properties which
are not vectors of elicitable properties: if the £ components of I" are themselves elicitable, we may
construct a convex loss for each, and the sum will be a convex loss eliciting I'. Unfortunately, we
lack a characterization of elicitable vector-valued properties, so the question of whether all elicitable

vector-valued properties are convex elicitable seems even further from reach.

4.7 Chapter appendix

4.7.1 Omitted proofs

Theorem 14. For P = A(Y), let T' : P — R be a continuous, nowhere-locally-constant property
which is identified by a bounded and oriented V : R x Y — R. If F = {V(-,y)}yey satisfies

Condition 1, then I' is convex elicitable.

Proof. We have assumed all f € F = {V(-,y)}yey are bounded, oriented, and satisfy Condition 1,
and thus to apply Proposition 11, we need only establish Conditions 2 and 3. A fact we use
throughout is that V(r,y) = Ey~s,V(r,Y), where §, is the point distribution on y € ).

To establish Condition 2, we first observe that boundedness of each f € F follows by
assumption. Second, we show that each f has at most one zero on R. As V identifies I", note that
V(r,y) =0 <= I'(0,) =r when r € R. As T is single-valued, there can be at most one such
reR. Third, we must show that if f has a zero on 702, it changes sign from negative to positive at
that zero, and if not, f never changes sign on R. The first case follows from the fact that I['(6y) =7
and that V is oriented. For the second case, V (-, y) has no zero on 702, and thus by continuity of V,
cannot change sign on R. Fourth, to see that F has at least one nonzero function for all r € R,

note that if V(r,y) =0 for all y € Y, then Ey .,V (r,Y) = 0 for all p € P. Thus, as V identifies I
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and r € 703, we would have I'(p) = r for all p, contradicting nowhere-locally-constancy.

For Condition 3, consider V(-,40),V(-,41) € F and open interval Z/ = (a,b) such that
V(r,yo) > 0 > V(r,y1) for all » € Z'. We define p, = (1 — a)dy, + ady, and y(a) = I'(p,) for
a € [0,1]. Since I is continuous and nowhere-locally-constant, Steinwart et al. [83, Cor. 9] implies
that I" is quasi-monotone, which in turn implies that - is nondecreasing on [0, 1].

We first show Z' C ~([0,1]) = [v(0),v(1)]. By definition of Z’, we know r € 7/ —
V(r,y1) < 0 < V(r,yo) and the orientation of V' then implies I'(d,,) > r > I'(d,,). Thus,
['(6y,) =~(1) > b>a >T(dy,) =~(0), with the strict inequality since Z’ is nonempty. We then see
that r € (a,b) = r € [['(dy,), ' (dy,)] = ([0, 1]), and therefore Z' C ~([0, 1])

Next, we show that v is not only nondecreasing but strictly increasing on 4 = v~ }(Z').
Note that A is itself an open interval as v is continuous. Let a,a’ € A, and suppose for a
contradiction that y(a) = v(a/) = r € Z/ C R. Then I'(ps) = ['(pa) = 7, and as V identifies
I', we have By, V(r,Y) = Ey., V(r,Y) = 0. Thus, Ey,V(r,Y) = (¢'Ey~p, V(r,Y) —
aBy~p ,V(r,Y))/(e —a) =0, and similarly for p;. By identifiability again, we must now have
I'(po) = I'(p1) = r, contradicting I'(pg) < I'(p1) as observed above.

Since V identifies I', we have for o € A,

0=Eyp,V(7(a),Y) = (1 = a)By~s,, [V(v(a), V)] + aByws, [V(v(a), Y)]

= (1 - a)V(y(a),y0) + oV (v(a),y1) ,

from which we conclude the function F(«a) = V(y(@),y1)/V(v(a),y) = (. — 1)/a =1 - 1/a,
which is strictly increasing in «. Observe that as + is strictly increasing on A, its inverse is strictly
increasing on Z'. Thus V (r,p1)/V (r,po) = F(y~(r)) =1 — 1/ Y(r) is strictly increasing on Z’, as
desired.

As we have now established that F satisfies Conditions 1-3, Proposition 11 yields a weight
function X : R — R, such that for all y € Y, the map r — A(r)V (r,y) is strictly increasing on K.
Thus, fixing 7o € R, the loss L(r,y) = S AV (r!,y)dr' is convex in 7 for each y € Y, as noted by

Rockafellar [77, Theorem 24.2]. Moreover, as A > 0, L elicits I" by Lambert [55, Theorem 6]. [
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4.7.2 Proving Proposition 11

Let Z C R be an interval, and F a finite set of functions f : Z — R. As a reminder, we
designate Ry := {r:r € R,r > 0}.

In Theorem 14, the family F will be the set of functions {V'(-,y)},ey identifying I'. For ease
of exposition, given any F, we define Fy(z) = {f € F : f(x) > 0} to be the subset of functions
strictly positive at z and F_(z) = {f € F : f(x) < 0} strictly negative. For any function f : Z — R,
let f*(z) = lim,_ .+ f(u) and f~(z) = lim,_,,- f(u) denote the right and left limits of f at x,
respectively.

For convenience, we recall our three conditions, and the statement to be proved.

Condition 1. Fvery f : T — R € F is continuous on 70:, and continuously differentiable on 7
except on a finite set Sy C Z. When f is differentiable, %f(:z:) is finite. Additionally, if x € 7 and

f(z) =0, then for all z in some open neighborhood U of x, d%f(z) > 0 whenever f is differentiable.

Condition 2. Every f € F is bounded and has at most one zero x5 € 7 so that if xp exists,
f(x) <0 forx <zf and f(x) >0 for x > xy¢. If f does not have a zero on I, then either f(z) < 0

or f(z) >0 for all x € Z. For all x € I, at least one function f € F is nonzero at x.

Condition 3. For all f,g € F and all open subintervals T' C 7 such that f>0>gqgonT, the

function % is strictly increasing on I'.

Proposition 11. If F satisfies Condition 1, 2, and 3, then there exists a function A : T — Ry so

that \f is increasing over I for every f € F.

Define Sz = Uycr Sy to be the set of all “problem points” in lo', where one or more functions
fail to be differentiable. Note that Sr is finite, as F is finite, and Sy is finite for every f € F by
Condition 1. Let S = Sz J8Z, where dZ denotes the (possibly empty) boundary of interval Z.

Additionally, define Z. := 7 \ S cC f, which is an open set as the union of open sets.
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We define the functions m : Z. -+ R and m : Z. -+ R

m(z) = _gesfu,p(m) i log(—g(x)) m(z) = — fej]gf(z) 4 og(f(x))
m'(x) := max (m(:p) -1, W) m/(z) := min (m(x) +1, W) :

and finally define h: Z — R and A : Z — R, as below.
h(z) := min (max (m/(z),0) ,m (z)) (4.7)
Az) :=exp (/Om h(u)du) , (4.8)
where we let h(z) =0 for z € S.

Lemma 29. Let ¢ : (x,y) — R be continuously differentiable and nondecreasing. Then d%cp(z) >0
for all z € (x,y). Moreover, p is strictly increasing if and only if Z = {z € (z,y) : d%gp(z) =0} is

totally disconnected.

Proof. The first part of the statement follows from invoking the Mean Value Theorem.

The converse of the statement is more nontrivial. Assume the differentiable function ¢ is
strictly increasing. As we know increasing = non-decreasing = nonnegative derivative, it
remains to be seen that the derivative is not 0 on any subinterval of (x,y). Suppose there was some
subinterval (a,b) C (z,y) so that ¢ had zero derivative on (a,b). By Mean Value Theorem, we could
then see ¢ is locally constant on (a, b); a contradiction. Therefore, the set of points where ¢ has 0
derivative must be totally disconnected.

Now assume %gp(z) is strictly positive except for a totally disconnected set Z where ¢ has 0
derivative, and recall d%gp is continuous on (z,y). As the set Z is totally disconnected, the derivative
of ¢ is not zero on any interval (a,b) C (z,y). As Z is totally disconnected, we then see that for
some z € (a,b), d%go(z) = ¢(b) — ¢(a)/(b—a) > 0 by Mean Value Theorem, and therefore ¢ is

strictly increasing as we can see p(a) < ¢(b). Therefore, ¢ is strictly increasing on (x,y). O

We will show that the product Af increasing on 7 for every function f € F. We begin with

three claims and then turn to the proof, interspersing technical lemmas which we prove afterwards.
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Lemma 30. If Condition 3 for F is satisfied on the interval (a,b) C Z. then for all x € (a,b)
and all f € Fi(z), g € F_(x) we have %log(—g(az)) < %logf(ac), where Z = {z € (a,b) :

% log(—g(z)) = % log f(x)} is totally disconnected.

Proof. Since f and g have well-defined, bounded derivative at = € Z. (and f(z) # 0), the function
% has a well-defined derivative at x, and strictly increasing on (a,b) by Condition 3, as (a,b) C Z,.
By Lemma 29, as % is strictly increasing on (a,b), we must have % (%) > 0Vx € (a,b) where
Z=Ax: %(%) = 0} is totally disconnected.

We can see that

Similarly, we conclude - log(—g(z)) < < log(f(z)) for all f € Fi(z), g € F-(z), and Lemma 29

shows that Z is totally disconnected. O

Lemma 31. Let F satisfy Conditions 1 and 2, and let § > 0 be given. Let I’ refer to any compact
subinterval of Z. For all f € F and e sufficiently small, there exists an M > 0 such that for all
x € I.NT', the following two conditions hold: (i) if |f(z)| > €, | log|f(z)|| < C, (i) if |f(z)] <e,

4 f(z) > 0.

Proof of Lemma 31. Let f € F be given. If f(x) # 0 for all z € Z’, then by continuity of f from
Condition 1, we have some €; > 0 such that |f(x)| > €1 for all x € 7. We know that |%f(x)| <C
by Condition 1 whenever z € Z., implying |-% log|f(z)|| = |-& f(z)/f(z)| < C/er =: M. Thus, our
condition (i) holds for any € < ¢, and condition (ii) never occurs.

On the other hand, if f has some zero z; € f, then by Condition 1, we have some open

neighborhood U of xf such that d%f(z) >0 for all z € UNZ,. On the closed set W =7’ \ U C Z,
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we have |f| > 0 by Condition 2, and by continuity of f, we moreover have e such that |f| > e
on W. Note that for any € < ez, we have {x € 7' : |f(z)| < ¢} C U. Now for any x € Z,. we have:
i) |f(zx)] > e = |d%log|f(m)|| = ]%f(x)/f(mﬂ < C/e =: M by the above argument, and (ii)

|f(z)|<e = 2€U = Lf(z)>0. O

Lemma 31 allows us to conclude that either m or m is bounded by M := C/e on 7'.
Claim 16. The function h : T — R defined by eq. (4.7) satisfies

(1) h is continuous on L.

(2) m(x) < h(x) <m(x) for all x € I..
(3) m(x) < h(xz) <m(x) for all but a totally disconnected set of x € I..

(4) h is bounded on any compact subinterval ' of 1.

Proof. Statement 1: As h is defined as the max and min of finitely many continuous functions on

Z., it is continuous on Z..

Statement 2: We give the function h(z) = max(min(m’(x),0),m'(x)), consider m'(z) < m(z)
and /() > m(z).

If m'(x) > 0,0 < h(z) <m(x) <m(z), and we can then say that h(zx) < m(x). Similarly,
if m'(z) < 0, then 0 > m(z) > m'(z) = h(z) by definition of h. If m'(x) = 0, then lastly we see
m(x) >m (z) = h(z) =

Therefore, m(z) > m/'(z) > h(z). It remains to be seen that m(x) < m/(x) < h(z). If
m/(x) > 0, then we can see m/(z) = h(z) > m(x) since m/(x) < m/(z) for all x € Z. If m/(z) < 0,

we can see that 0 > h(xz) > m/(x) > m(x). Thus, we observe that h(z) > m/(z).

Statement 3: By Lemma 30, for all g, f € F so that ¢ < 0 < f on the interval 7/ C Z,,
Z={zxel: % log(—g(z)) = % log(f(z))} is totally disconnected. By definition of ™ and m, we
conclude m(z) < m(x) on all but a totally disconnected set. By inspection, h(z) = m(z) if and only
if h(z) = m(x), as this is the only way that m(z) = m'(x) and m(x) = m/(z), which are used to

construct h. Thus, m(z) < h(x) < m(z) for all x € Z, which is totally disconnected.
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Statement 4: Let 7' be a compact subinterval of 7. By Lemma 31, for every f € F we have €; and
My such that for every x € 7' N1, if (i) | f(x)| > €/, |%log|f(w)\| < My, and (ii) if |f(2)] < €y,
% f(z) > 0. Note that similar to the proof of Lemma 31, for ¢’ sufficiently small, we will have for all
x € T’ that there is at least one f € F such that |f(z)| > €. (This uses the uniqueness of roots by
Condition 2 and continuity of each element of F by Condition 1.) Finally, let e = min(¢’, miny ey)
and M = max; M.

Now suppose |f(z)| < e. If f(z) > 0, then Llog f(z) = & f(z)/f(z) > 0 as L f(z) >0 by
(i). Similarly, if f(x) < 0, then % log —f(z) = % (x)/f(x) <0. We conclude that for any = € Z,,
either [m(z)| < M or m(x) <0, by definition of m. Similarly, for any = € Z, either [m(z)| < M or
m(x) > 0. Moreover, as € < €, for all z € Z'NZ. at least one function f € F has |f(z)| > €, and we
must have [m(z)| < M or |m(z)| < M.

Let us then consider three cases:
o |m(x)] < M and |m(z)| < M. By definition of h, it is clear that |h(x)| < M + 1.

o [m(z)] < M and m(z) < 0. Here |m/(z)| < M + 1 and either m/(z) <0 or 0 < m/(z) <

o m(z) >0 and |m(x)| < M. Symmetrically, we have —M — 1 < h(z) < 0.

We conclude that |h(x)] < M +1 on Z'. As 7’ is arbitrary, we then observe |h(z)| < M + 1 on any

compact subinterval of 7.

O]

Claim 17. The function h constructed in eq. (4.7) is Lebesgue integrable and X\ constructed in

eq. (4.8) is continuously differentiable for all x € Z.. Moreover, \f is continuous on 7 forall f € F.

Proof. Observe that the function h is bounded on every compact subinterval Z’ of 7 by Statement
(4) of Claim 16, and is continuous on Z, by Statement (1). As Z, = Z \ S has full Lebesgue measure
over Z, h is continuous almost everywhere on 7. Moreover, for every compact subinterval Z' C f,

the Riemann integral [, h(z)dz exists and is bounded. Thus, the improper Riemann integral
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lim, - [} h(2)dz exists for a € 0T and is equal to the Lebesgue integral [ h(z)dz, as shown by
Apostol [7, Theorem 10.33]; note however that we may have [ h(2)dz = oco.

As Pouso [69] shows the Fundamental Theorem of Calculus can be applied to Lebesgue
integrals and h is Lebesgue integrable on Z, (1) = o h(2)dz is differentiable where h is continuous,
shown by Abbott [1, Theorem 7.5.1]. By statement (1) of Claim 16, we also know h is continuous
on Z., so we know ¢ is differentiable on Z., and additionally observe %gp(x) = h(z). Thus we can
say A is differentiable for all z € Z., and %A(az) = h(z)A(z). Therefore, at every x € Z., \f is the
product of two differentiable functions, and is therefore differentiable on Z..

Moreover, as the set of discontinuities of h is finite as S is finite, so we know ¢ is then
continuous on Z. A is then continuous on 7 as it is the exponent of a continuous function. As f is
assumed continuous in Condition 1, the product Af is continuous on Z’.

(We note that any function h satisfying the statements in Claim 16 would be Lebesgue

intregrable on 7 , but the proof in Claim 16 is only provided for h as constructed in Equation 4.7.) [

Claim 18. For every x € Z. and every f € F, the derivative of \f at x is nonnegative, and 0 at a

totally disconmected set of values.

Proof. We observe L \(z) = \(z)h(x) for any x € Z.. given the construction of \ in Equation (4.8).

By substitution, we now have

i (AN(@) = EA@) f(2) + Ma) (@) = Ma)h(@) f(2) + M) g f (@) - (4.9)

As A(z) > 0, it therefore suffices to show h(z)f(z) + £ f(z) > 0 for any f € F.
Recall from Condition 1 that if f(x) = 0, then there is some open neighborhood U around z
where d%f(z) > 0 for all z € U. By Claim 16, Statement 2, and the definitions of 77 and m, for all

x €I, g€ F_(x),and f € Fi(zr), we have
— 4z log(—g(2)) > m(x) > h(z) > m(x) > — L log(f(2)) , (4.10)

where the inequalities involving h are strict at all but a totally disconnected set by Statement 3.
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i x
az ! ), we can see that for any f € Fi(z), h(z)f(z) > —2L f(z)

Writing & log(f(x)) as i) > -4

by some mild maniupulation of Statement (2) of Claim 16. Similarly, for ¢ € F_(z), as g is
negative, we can see that h(x)g(z) > —%g(:v). Therefore, for all f € F and = € Z., we observe that
h(z)f(x) > —% (), with equality only at a totally disconnected set of points by Statement (3)

of Claim 16, as for all f € F, h(z)f(z) > —4L f(z) <= m(z) > h(z) > m(z) at all but a totally
disconnected set. We stated earlier that it sufficed to show h(z)f(z) > —%f(x) for all f € F in

order to conclude %(Af)(:c) > 0 for all  in Z.. O
We now have the groundwork we need to prove the Proposition.

Proposition 11. If F satisfies Condition 1, 2, and 3, then there exists a function A\ : T — Ry so

that Af is increasing over T for every f € F.

Proof. Claim 17 shows that Af is continuous on 7 and continuously differentiable on Z.. Claim 18
shows %()\f)(:c) > 0 with %()\f)(x) = 0 at a totally disconnected set of z € Z,. As S is finite, note
that Z. is then the disjoint union of open intervals 7y, ...,7Z;. By Lemma 29, we have that \f is
strictly increasing on each Z;. As Af is continuous on f, we further conclude that Af is strictly
increasing on the closure of each Z; except on the boundary of Z; that is, Af is strictly increasing on

cl(Z;) \ OZ. Finally, writing Z = UF_ cl(Z;) \ OZ, we see that Af is strictly increasing on all of Z. [J

This concludes the proof of Proposition 11.
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Chapter 5

Embedding Dimension of Polyhedral Surrogates

5.1 Introduction

In Chapter 1, we mentioned and discussed three desiderata of surrogate losses: convexity,
consistency, and efficiency. This chapter focuses on the setting of Quadrant 1 of Table 2.1, and takes
convexity and consistency as prerequisites, now asking how efficient a loss can be for a given task.
We ask, given £, how do we design consistent and convex surrogates L : R¢ x ) — R, ? In particular,
this chapter examines polyhedral embeddings, which are piecewise-linear and convex embeddings over
the prediction space R%. Chapter 3 shows that polyhedral surrogates are in a strong sense related
to an embedding mapping of each discrete prediction r to some point ¢(r) € R?, which optimizes
L-loss if and only if 7 optimizes ¢-loss. While every discrete loss £ can be embedded, in the worst
case the prediction dimension required is d = n — 1 where n is the number of possible labels; this
may be exponentially high in some settings, such as structured prediction. This chapter studies
the prediction dimension of polyhedral embeddings such as structured prediction. A prediction
dimension d significantly below n, such as O(logn) for classification with an abstain option [72],
can lead to faster downstream optimization and computation, an effect that grows with n; thus, we
seek to understand for which target losses this dimension can be low.

This chapter defines and investigates the embedding dimension of discrete losses, and char-
acterizes the d-embeddable losses for each d. Beginning with d = 1, i.e. embedding into the real
line via L : R x Y — Ry, we offer a complete characterization via a variety of conceptual and

testable/constructive conditions (§ 5.3). Perhaps surprisingly, for d = 1, if any convex calibrated
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surrogate exists, then in particular a polyhedral one does. In higher dimensions, we observe a general
characterization for d-embeddability in terms of certain optimality and monotonicity conditions
(§ 5.4). In particular, we isolate and investigate the optimality condition, which we significantly
reduce from a search over sets of polytopes to a quadratic feasibility program (Definition 37),
yielding a new technique to prove lower bounds on the embedding dimension. Finally, we apply
our characterizations to show new lower bounds on the embedding dimension for abstain loss,
whose convex calibration dimension has been well-studied [71, 72] (§ 5.5). Both the 1-dimension
characterization and higher-dimensional quadratic program obtain previously unknown lower bounds
on embedding dimension and convex calibration dimension (cf. [71]).

The work in this chapter comes heavily from Finocchiaro et al. [29], published at COLT 2020.

5.2 Setting

We now formalize the notion of embedding dimension studied in this chapter. In order to
concisely discuss embedding dimension, we appeal to notation and terminology from the field of
property elicitation [46, 55, 56, 66, 79], relating it to the language of calibrated surrogates as needed;
for intuition this is a translation from Quadrant 1 to Quadrant 3 in Table 2.1. Recall that in
the Quadrant 1 setting of Table 2.1, Tewari and Bartlett [84] show that calibration (Definition 8)
is necessary and sufficient for consistency. For simplicity, we assume the given discrete loss is
non-redundant, meaning every report r uniquely minimizes expected loss for some distribution
p € Ay.

In Chapter 3, we studied the notion of embedding. For a quick recap, a surrogate loss
L :R%x Y — R, embeds a discrete loss £ : R x ) — R, if there is an injection ¢ : S — R?
such that ¢(r) is L-optimal if and only if r is ¢ optimal for every r € S, where S C R such that

propa,, [f(p) NS # 0 for all p € Ay.

Definition 33 (Embedding dimension). We say a discrete loss £ : R — Rz is d-embeddable if there

exists a polyhedral surrogate L : R — R{ that embeds it. The embedding dimension of £ is the
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smallest d such that ¢ is d-embeddable.

Several works have investigated the problem of reducing the prediction dimension of a surrogate
loss while maintaining correctness desiderata, such as convex and consistency.

A number of upper bounds on embedding dimension are already known. Many surrogates in
the literature provide upper bounds; we highlight in particular the abstain loss [72] in eq. (5.3), in
which one wants to predict the most likely outcome only if confident in the outcome, and otherwise
abstain. In general (e.g. Ramaswamy and Agarwal [71, Corollary 13]), a known convex-conjugate
construction generically embeds any discrete loss on )V = [n] into d = n — 1 dimensions, giving a flat
upper bound of n — 1 on embedding dimension.

Lower bounds exist but are rare. A lower bound on the dimensionality of any calibrated
convex surrogate L implies in particular a lower bound on polyhedral surrogates. Ramaswamy and
Agarwal [71] give such a lower bound via the technique of feasible subspace dimension, which is able
to e.g. prove that embedding 0-1 loss on n labels requires dimension n — 1. However, this technique
gives only the trivial d > 1 for the abstain family of losses above when a < 1/2 because of their

geometric structure. For an overview of different prediction dimension metrics, see § 2.4.

5.3 One-dimensional embeddings

We first give a complete characterization when a discrete loss ¢ can be embedded into the
real line, i.e., when ¢ is 1l-embeddable. Our first characterization is expressed in terms of the
property v that £ elicits, stating that ¢ is 1-embeddable if and only if v is orderable, meaning the
adjacency graph of its level sets is a path. For example, this characterization will immediately
imply that embedding the abstain losses on n > 3 outcomes requires d > 2 dimensions (§ 5.5.2).
While determining these adjacencies can be straightforward when ¢ has known symmetries, we also
give a more constructive algorithm for testing 1-embeddability and constructing a 1-dimensional
polyhedral surrogate. Finally, we show that the existence of any 1-dimensional convex calibrated

implies 1-embeddability, showing that embeddings are without loss of generality in dimension 1.
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After presenting and discussing this sequence of results, we observe that they can be collected as
a set of six conditions on ¢ (Theorem 12) that are all pairwise equivalent, and in particular, are

equivalent to 1-embeddability.

5.3.1 General characterization via property elicitation

We begin with conditions on the property elicited by a discrete loss. The following condition
of Lambert [55, Theorem 3], that a finite property is orderable, states that any two level sets intersect

in a hyperplane, or not at all.

Definition 34 (Orderable). A finite property v : Ay — 2% is orderable if there is an enumeration
of R ={r1,...,mr|} such that for all i <|R|— 1, we have v, Ny, is a hyperplane intersected

with Ay.
In fact, we show that orderability characterizes 1-embeddability.
Theorem 10. A discrete loss £ is 1-embeddable if and only if the property it elicits is orderable.

We now give an equivalent condition to orderability which may be more intuitive: the adjacency
graph of the level sets of 7, formed by connecting reports if their level sets intersect, must be a path.
This graph can be easily established for discrete losses with known symmetries or other facts, such

as abstain, the mode, or ranking losses.

Definition 35 (Intersection graph). Given a discrete loss £ and associated finite property v : Ay —
2R elicited by ¢, the intersection graph has vertices R with an edge (r,7") if 4 Ny Nrelint(Ay) # 0,

where relint(Ay) is the relative interior of Ay.

If one can visualize level sets of a property, constructing the intersection graph yields an

intuitive way to conceptualize orderability by Proposition 12.

Proposition 12. A finite property ~v is orderable iff its intersection graph is a path, i.e. a connected

graph where two nodes have degree 1 and every other node has degree 2.
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Figure 5.1: Level sets and intersection graph for

Figure 5.2: Level sets and intersection graph for
a given property, |V| = 3.

the abstain, /o property, ¥ = {1,2,3}.

Proof. (=) The intersection graph is constructed by adding an edge for each halfspace, which
connects only two nodes. If three level sets intersected on relint(Ay), then the level boundary for
any two would not be a halfspace (this follows because the level sets form a power diagram, e.g. [56]).
This yields a path for the intersection graph.

( <= ) If the intersection graph forms a path, then we can enumerate the vertices from source
to sink as r1,...,7R|. The level sets are full-dimensional (in the simplex) convex polytopes whose
intersections only occur in the relative boundary, as they form cells of a power diagram. Since
vr, intersects only with ~,, on the relative interior of the simplex, and both sets are convex, this
intersection must be a hyperplane intersecting the simplex. (Otherwise, one of the sets would not
be convex, or «,, would intersect with some other level set on the relative interior. We can now
“delete” 7,,, more formally, consider the convex polytope v, U... U Yriz- The same argument now
applies to v,,, giving that it is intersects with v,, along a hyperplane intersected with the simplex;

and so on. O

Combining Proposition 12 and Theorem 10, we see that in order for £ to be embedded onto
the real line, it is necessary and sufficient for the intersection graph of the property v to be a
path. We give an example of a direct application in § 5.5.1. By visualizing the level sets of v as a
power diagram (generalization of Voronoi diagram) in the simplex like Lambert and Shoham [56],
we can also use Proposition 12 to perform a visual test for orderability, and thus 1-embeddability

(Figures 5.1 and 5.2).
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5.3.2 Constructing a surrogate

While Theorem 10 and Proposition 12 are quite useful for discrete losses with known symme-
tries, they do not immediately provide an algorithm to test 1-embeddability of an arbitrary discrete
loss £, nor to construct the convex loss L which embeds it. We now turn to an algorithmic test, which
actually builds a real-valued polyhedral calibrated surrogate in the event that ¢ is 1-embeddable

that “stitches” linear functions together using weights A to insure continuity.

Theorem 11. Let ¢ : R — Rﬁ be a discrete loss. Then £ is 1-embeddable if and only if there

is an ordering R = {r1,...,7m} of the reports such that the following two conditions hold, where

v(i)y = L(ri,y) — £(ri—1,y):
(1) For ally € Y, the sequence sgn(v(i)y) is monotone ini € {1,...,k —1},

(2) Forallie{2,...,k—1}

SN v(i)y . )

A (z)—mln{m.yGy,U(Z)y,U(Z+1)y<O}
N v(i)y . .

)\+(Z)_maX{M.yEy,v(z)y,v(z+1)y>O} )

we have A\~ (i) > AT (7). (We adopt the convention max(()) = —oo, min(f)) = +oc0c.)
Moreover, when these conditions hold, the loss L : R — RY embeds ¢ with ¢ : R — R, where
i—1
o(ri)) =Y 1/A; . (where p(r1) =0)
j=1

U(r1,y) —uK u<(r) =0

L(uy) = tri,y) + A - (w— @(r2)) - (U(risr,y) — 6riy))  w € [o(rs), plrip1)]

ks y) + A1 - (u— (1)) - K u > (1)

where A(i) = min(AT (), max(A™ (), 1)), A; := 3-:2 A(j), A =1, and K = max;eqa k) yey [V(0)yl-

As intuition for the proof, note that the conditions of the theorem ensure the existence of

a positive multiplier A\(7) making v(i) < A(i)v(i + 1) hold coordinate-wise; our choice of A(4) is
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but one option. The construction of L sets the left and right derivatives at an embedding point
©(ri) to be positive multiples of v(i) and v(i + 1), respectively, using this inequality to maintain
monotonicity, and hence convexity of L. The vectors v(i),v(i + 1) are chosen precisely to give
the correct optimality conditions, so that for a given distribution, r; is optimal for ¢ if and only
if p(r;) is optimal for L. The reverse direction, showing that these conditions are necessary for
1-embeddability, is much more involved. We can easily construct a link function in the case of d =1,
by taking the midpoints between the embedding points as cutoffs: ¢ (u) = argmin, . |u — ()],
breaking ties arbitrarily. Moreover, this v is an e-thickened link via Construction 1.

We summarize the above results in the following theorem, together with one additional result:

if £ has any calibrated convex surrogate at all, it must have a polyhedral one.

Theorem 12. Let ¢ be a discrete loss eliciting a finite property ~v. The following are equivalent: (1)
v is orderable; (2) the intersection graph of v is a path; (3) the two conditions of Theorem 11 are
satisfied; (4) ¢ is 1-embeddable; (5) ¢ has some polyhedral calibrated surrogate loss L : R — R}:; (6)

£ has some convex calibrated surrogate loss L : R — R{.

For the proof, note that (1) <= (2) was shown in Proposition 12, while (4) <= (5) follows
from Theorem 1, and (5) = (6) is immediate from the definitions. [29, Theorem 1] therefore

proves (1) = (3) = () and (6) = (1).
5.4 Higher dimensions

Our characterization of 1-embeddable losses reveals a large class of properties are not 1-
embeddable. In this section, we develop a characterization of d-embeddable discrete losses for d > 2.
We begin with some basic facts and definitions about polytopes and their Minkowski sums, which
naturally arise when considering the subgradients of a polyhedral surrogate loss (§ 5.4.1). From
these definitions, we can state a somewhat immediate characterization of d-embeddable losses in
terms of polytopes that satisfy certain optimality and monotonicity conditions (Theorem 13). We

then explore the optimality condition further, and through facts about Minkowski sums, slowly
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remove mentions of polytopes from the condition until we arrive at a quadratic feasibility program
to test whether such polytopes exist (Theorem 15). From our main characterization, dropping the
monotonicity condition, this program gives a novel necessary condition for d-embeddability, yielding

new lower bounds for embedding dimension (Corollary 14).

5.4.1 Setup: subgradient sets at embedding points.

Recall that if ¢ : R — RX with representative set S is embedded by L : R — ]RX, then each
r € S is embedded at some point ¢(r) € R In particular, (r) must minimize E,L(-,Y) if and
only if  minimizes E,¢(-,Y"). The key to our approach is to study as first-class objects the sets of
all subgradients’ of L at these embedding points. The question of whether a calibrated polyhedral
surrogate exists in d dimensions essentially reduces to conditions on these sets alone. In particular,
we use the fact that a convex function is minimized at w if and only if 0 is in its subdifferential
(subgradient set) at u. Therefore, we consider collections of sets T}/, which intuitively aspire to
be the subdifferentials of a calibrated polyhedral surrogate L(-,y) at ¢(r), denoted OL(p(r),y).
Throughout, we often take r as implicit and suppress it from our notation for ease of exposition.
Note that if L(-,%) is a polyhedral function on R?, then all of its subgradient sets are (bounded)

closed polytopes [77].

Definition 36 (7, D(T)). We write T = {T,, C R? : y € Y} to denote a collection of closed
polytopes, with implicit parameter d. Given a distribution p € Ay, we write the p-weighted Minkowski

sum of T as

®,7T = @pyTy = Zpya:y ‘ r,eTy,VyelY, ,
yeY yey

or in other words, the Minkowski sum of the scaled sets {p,T, : y € V}. Finally, we associate with

T a set of distributions D(T) = {p € Ay : 0 € ©,T}.

Note that T}, = T} for some 7 € R; here, we are agnostic to the choice of r, so we omit its

notation for clarity. The importance of the p-weighted Minkowski sum and of D(7) are that they

! Recall that a subgradient of e.g. the convex function L(-,7) : R* x ) — R4 at a point u is a vector v € R? such
that L(v',y) > L(u,y) + (v,u’ — u) for all u'.
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capture the distributions p for which a point « minimizes expected loss, whenever 7 corresponds to
the subgradient sets of some polyhedral L at u. In other words, under these conditions, if T, = T, (T),

we have D(T) =Ty, the level set for ¢(r) of the property I elicited by L embedding .

Lemma 32. Let L :R? x Y — R, be a polyhedral loss eliciting a property T'. If for all y € Y we

have T, = OL(u,y) at some point u € R, then D(T) =T,.

Proof. Recall that a convex function f is minimized at u = ¢(r) if and only if 0 € df(u). We thus
have p € I, <= u € argmin, E,L(v/,Y) <= 0€ 0E,L(u,Y) = Dyey PyOL(w,y) = ©pT
p € D(T). Here we used the basic fact that if fi, fo are convex with subgradient sets 77,75 at u,

then af; + Sfo has subgradient set o1} @ 715, the Minkowski sum of the scaled sets. O

This fact will be vital for characterizing when £ is correctly embedded by some L whose

subgradient sets are 7" for each r € R.

5.4.2 General characterization

We now give a general characterization of when a discrete loss ¢ can be embedded into d
dimensions, i.e. when a consistent polyhedral surrogate L : R% x ) — R exists. Two conditions are
required: optimality and monotonicity. Optimality enforces that the surrogate is minimized precisely
when and where it should be. It says that for each discrete prediction r and set of distributions -, for
which it is f-optimal, there exists a collection of polytopes 7" such that, were they the subgradients
of some polyhedral surrogate L at some point (), then ¢(r) would be L-optimal at the same set
of distributions ~,; more succinctly in light of Lemma 32, we require D(7") = .. Monotonicity
says that these individual polytopes can indeed be glued together to form the subgradients of some

convex loss function L.

Theorem 13. Let £ : R x Y — Ry be a discrete loss with, for eachr € R, v ={p € Ay | r €

argmin,, E,0(r,Y)}. Then ¢ is d-embeddable if and only if there exists a collection of polytopes

T =A{T, :y € Y} for each r € R such that both of the following hold:
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(1) (Optimality) For each r, we have D(T") = ~,.

(2) (Monotonicity) There exists an injective embedding function ¢ : S — RY and loss functions
{L(-,y):R¢ — Rgo}yey such that for all v € R and y € Y, we have T,] = 0L(¢(r),y) and

for all r € R, we have L(p(r),y) = £(r,y).

Proof. (=) L embeds /¢ implies v, = I',(r) = D(7") by Lemma 32 for all » € R, thus we have
optimality. Monotonicity follows directly from the embedding definition.

( <= ) The first two embedding conditions hold by the assumption of ¢ in the monotonicity
condition. The third condition is v, = Ty, for all 7. From optimality, we have v, = D(T"). Taking

T ={T, :y € Y}, Lemma 32 implies that I',,) = D(T") = 7. =

5.4.3 Characterizing optimality

We now focus entirely on the optimality condition of Theorem 13, for two purposes. First, we
aim to greatly narrow the search space for constructing low-dimensional surrogate loss functions
for a given discrete loss. The tools we construct in this section aid in this task by constraining or
constructing feasible subgradient sets 7 given a level set ... Second, we wish to prove impossibilities,
i.e., lower bounds on the embedding dimension of a given discrete loss (an apparently hard problem).
For such lower bounds, it suffices to drop monotonicity from Theorem 13, leaving us with an
independent optimality condition for each r € R, and show that for any one r € R, we could not
have d-dimensional polytopes T satisfying D(7") = ;.

At first glance, the optimality condition seems difficult to operationalize, as it involves the
existence of polytopes, and even if said polytopes are given, it is unclear how to test whether
D(T") = v,. To begin, consider the latter problem, of understanding the set D(7) in terms of
descriptions of 7T, and in particular, of writing conditions on 7 such that D(T) is equal to a
given polytope C' C Ay. We know that, by writing C' in its halfspace and vertex representations,

respectively, we can give two such conditions.
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Condition 4 (Halfspace condition). A collection of polytopes T and a polytope C C Ay defined by
C={peAy:Bp> 6} satisfy the halfspace condition if there exist vi,...,v; € R% such that, for

alli € [k] andy € Y, for all v € T, we have (vi,x) < Byy.

Condition 5 (Vertex condition). A collection of polytopes T and a polytope C C Ay defined by

C = conv({p',...,p'}) satisfy the vertex condition if for all j € [I], 0 € ®,;T.
P

We now show that, for any convex polytope C, satifying vertex and halfspace conditions are

necessary and sufficient for C' being equal to D(T) = {p € Ay | 0 € ®,T}.

Theorem 14. Let the polytopes T = {T, C Re:y € Y} and C be given, with C = conv({p',...,p'}) =
{p:Bp >0} for B € RF*" We have D(T) = C if and only if both the halfspace and vertex condi-

tions hold.

Proof. ( =) Suppose D(T) = C. First, we note that the vertex condition is immediate: For
all j € [¢], p? € C which gives p’ € D(T). To show the halfspace condition is satisfied, we first
construct a matrix F such that Ep > 0 <= Bp > 0, then use this construction to pick out the
necessary vectors vy, ..., V.

By Lemma 33, there is a finite collection of vectors w1, ..., wx € R? and such that 0c DT
if and only if, for all w;, >, py maxer, (wi,z) > 0. Hence, each vector w; generates a row of
a matrix E € RE*" with Ej;, = maxger, (w;, z), and we have p € D(T) <= Ep > 0. By
assumption of D(7) = C, then, we have Ep > 0 <= Bp > 0. By Lemma 35, because B has the
minimum possible number of rows, each row of B appears (scaled by some positive constant) as a
different row of E. Taking the collection of w; corresponding to these rows and rescaling them by
that positive constant, we get a collection of k vectors that we can rename v1, ..., v; € R?, with
maxgeT, (Vi, ) = By, hence the halfspace condition is satisfied.

( <= ) Suppose Conditions 4 and 5 hold. Then by the vertex condition, p’ € D(T) for all
j € [£]. Because D(T) is convex (Lemma 34), this implies C' C D(T). To show D(T) C C, let

p € D(T); by definition, 0 € &,7. Then in particular for each vector vy, ..., v, guaranteed by the
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halfspace condition, we have

0 < max (v,x)
Z‘GEBpT

=> py ggggj% x)

yeY
< Z pyBiy‘
yey
This proves Bp > 0,s0 p € C. O
Lemma 33. Given polytopes T, there exists a finite set of normal vectors wy, ..., wx € R* such

that, for allp € Ay, ®,T = {z : (w;,z) < > yey Py MaXzer, (wi, x)}.

Proof. For each p, &,T is a polytope. For each of the finitely many supports (2" — 1), we know
®,7 is a polytope, and every polytope can be defined by a finite, complete set of vectors for that
polytope. As a two polytopes with the same support are combinatorially equivalent, they can be
defined by the same facet enumeration, and any set of normals that is complete for &,7 is also
complete for a @&,/ T if supp (p) = supp (p’). We can simply concatenate these finite set of normals
for the finite polytope supports, with some normals possibly becoming redundant. This yields

finitely many normals defining the weighted Minkowski sum @, 7 for all p € Ay,. O
Lemma 34. For any T, D(T) is a polytope (in particular, is convex).

Proof. Recall by definition, the notation @,7 = {3, pyzy : z, € T;;(Vy)}. Each T} is a polytope,
so p,T, is a polytope. The Minkowski sum of polytopes is a polytope, so @,7 is a polytope [86,
Section 1.2]. Since @,7 is a polytope for all p € Ay, we know there is a halfspace representation of
normals V' so that for all y € Y, we have z € p,T,, <= (V,z) < p,e¥ for some matrix V and the
support vector eV, where e} = Hr,(V;). By Lemma 33, we know that there is a set of normals V*
that is complete for T'(p) for all p € Ay. We construct E* as the support matrix for this complete
set of normals. The support of the Minkowski sum for a given normal is the sum of the normals [86,

Theorem 3.1.6], and so we we can take x € ®,7 <= (V*,z) < E*p. Substituting x = 0, we see
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0c®,T «< E*p>0 <= pec D(T) by Lemma 44, which defines a polytope by construction of

E*. O

Lemma 35. Let C = {p: Bp > 6} where B has the minimum possible number of rows to capture
C, and suppose C = {p: Ep > 6} Then for each row in B there is some (unique) row in E that is

equal to aB for some positive «.

Proof. Ziegler [97, Exercise 2.15] alludes to this fact. Suppose there was a row j of B that did not
appear (possibly scaled, because of the inequality on 6) in E. Then there is some = € {z : Ex > 0}
so that (B;,x) > 0 for all ¢ # j and (Bj, ) < 0 since B has the minimum number of rows required

to capture C. This contradicts z € C = {z : z : Bx > 0}. O

The two conditions in Theorem 14 give us a much better understanding of when a given
set of polytopes T satisfies the optimality condition. We are still left with the problem, however,
of understanding when such a set T exists. Intuitively, the biggest hurdle that remains is the
quantification over sets of polytopes, a massive search space. Surprisingly, one can reduce this
search to a quadratic feasibility program, which we now give. The key insight involves the halfspace
condition, and observing that given a certain “complete” set of normal vectors, one can exactly
describe the support function of ®,7 in terms of the support functions of each 7, and each normal
vector v. From here, we use the fact that this description is linear in p, and can therefore relate it
directly to the given matrix B.

Our program will consist of variables for the normal vectors {v; € R? : i € [k]} for the (relaxed)
halfspace condition, as described above, and variables for vertices {zJ € R?: j € [l],y € Y} which

witness 0 € @,; 7 for the vertex condition, where the vector x@ is the y*" column of X7.

Definition 37 (Quadratic Feasibility Program).
Given: d € N, a polytope C = {p € Ay : Bp > 0} = conv({p',...,p'}) C Ay, where
B € RF*" has a minimum number of rows.

Variables: V € RF*? with rows {v;}; X',..., X" € R¥™™, where X7 has columns {mé}
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Constraints:

VX' <B (pointwise, Vj € [l]) (5.1)

> Pl =0 (% € i) (5.2)

Our main result of this section is that our quadratic program is feasible if and only if there
exist some set of d-dimensional polytopes satisyfing the optimality condition in Theorem 13. As an
immediate corollary, if some input C' =+, and d yields an infeasible program, then the embedding

dimension of the loss ¢ is at least d + 1.

Theorem 15. Given a convex polytope C C Ay, there exist polytopes T in R¢ such that D(T) = C

if and only if the above quadratic program (Definition 37) is a feasible.

Proof. By Theorem 14, it suffices to show that 7 satisfying the halfspace and vertex conditions
exist if and only if the program is feasible.

( = ) By the vertex condition, for each j € [l], there exist witnesses {x{/ €eTy:yel}
satisfying the second constraint of the quadratic program (Inequality 5.2). By the halfspace condition,
there exist normals v1, ..., v, such that, for all 7, for all x € T}, (v;,z) < Bjy; in particular, this
applies to the above witnesses a:?]J € Ty. Collecting vy, ..., v} as the columns of V, this shows that

the first constraint (Inequality 5.1) is satisfied.

( < ) We construct T, = conv({xé,...,xé}). The second constraint of the quadratic
program immediately implies the vertex condition. Taking vy, ..., v, as the columns of V', the first

constraint implies that for each :vg, we have (v;, a:{) < Bjy for all 7, j,y. Any point x € T}, is a convex

combination of lej, ey xé, so it satisfies (v;,x) < Byy. This implies the halfspace condition. O

Corollary 14. Given a discrete loss £ eliciting vy, if there is a report r € R such that the quadratic
program (Definition 37) is infeasible for input C =, and d, then the embedding dimension of £ is

at least d + 1.

The feasibility program can be viewed as a low-rank matrix problem, namely: does there exist

a set of rank-d matrices that are pointwise dominated by B, sharing the left factor V, whose right
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Y1 Y2
T 5 3
T9 4 1
T3 2 1
T4 1 4
Ts5 1 6
Te 3 8

Table 5.1: Ordered discrete loss matrix of ¢ which we embed.

factors X7 respectively satisfy a subspace constraint? We will see in § 5.5.3 that for the important
example of abstain loss, the constraints simplify into a more pure low-rank matrix problem. In
particular, for d = n — 1, a solution always exists via the construction in Theorem 4, which takes
the convex conjugate of the negative Bayes risk of ¢ for each outcome and subtracting the report u,

after which one can project down to n — 1 dimensions since dim(affhull(Ay)) =n — 1.

5.5 Examples

5.5.1 Example construction of real-valued embedding

For concreteness, we now construct an embedding via the loss given in Theorem 11. We start
with the ordered discrete loss given in Table 5.1

Given this loss, we can calculate v(i), as in Theorem 11 for both losses, shown by the o in
Figure 5.3.

Note here that we observe K =4, A = (1,1/2,1/2,3/4,3/4), and embedding points p(R) =

(0,1,3,5,19/3,23/3). The polyhedral loss is then shown in Figure 5.4.
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Figure 5.3: o represents the original v;,
where blue is used for v(-),, and red for
v(-)y,. The x symbol of the same color is
the A-corrected directional derivative to force
monotonicity.
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Figure 5.4: Our constructed embedding L for
the discrete loss £ given in Table 5.1.
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5.5.2 Abstain, d =1

Consider the following abstain loss Ef:bsa R xY — Ry, where R =Y U{L}. For intuition,

consider | an “abstain” report.

0 r=y
doaltry) =30 r=1 (5.3)
1 r¢{y L}

For av < 1/2, Ramaswamy et al. [72] give an elegant embedding of this loss on n outcomes
into d = [logy(n)| dimensions, where each y € ) is embedded at a corner of the Boolean hypercube
{—1,1}¢ while L is embedded at the origin.

One classification-like problem that is of particular interest is the abstain property, elicited by
the loss Egbsa given in Equation (5.3). The property v = abstain, for a € (0,1) can be verified:

argmax,cypy, maxypy > 1—«
abstaing (p) = ! . (5.4)

1 otherwise

Ramaswamy et al. [72] study the abstain property in depth, presenting a [log,(n)] dimensional
embedding of the abstain property. However, it is unclear if this bound is tight, as the previously
studied lower bounds of Ramaswamy and Agarwal [71] do not work well for this property, failing to
give any lower bound tighter than the trivial dimension 1.

With our 1-dimensional characterization, we already observe a tighter lower bound.
Proposition 13. Forn > 3 and o < 1, the abstain loss £, is not 1-embeddable.

Proof. Consider the intersection graph of v := abstain,, which is a spoke-like graph. In particular,
the node associated with +, has n edges, and since we assume n > 3, it cannot be a path. In fact,
the intersection graph for this property is a star graph. For an example with n = 3 and oo = 1/2,

see Figure 5.2. 0
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5.5.3 Abstain, a = 1/2, d =2

We now use our d-dimensional characterization and some observations about the abstain;
property to improve lower bounds from those given by Ramaswamy and Agarwal [71]. We defer

details to § 5.7.2.

Proposition 14. The quadratic feasibility program (Definition 37) with input C =y, = {p € Ay :

maxy, py < 1/2}, n =5, and dimension parameter d = 2, is infeasible.

Corollary 15. The abstain loss with oo = 1/2 on n > 5 outcomes has embedding dimension at least

3.

5.6 Chapter conclusion

Essentially the only other known lower-bound technique for dimensionality of calibrated
surrogates is the feasible subspace dimension of Ramaswamy and Agarwal [71]. This crux of this
technique is also an optimality condition on a surrogate loss, showing that if 0 is in the p-weighted
Minkowski sum of the subgradient sets of L, then there is some local affine set of dimension n —d—1
such that 0 is also in the p’-weighted Minkowski sum for all p’ in the set, and thus the set must be
contained in ,. Therefore, for example, if the intersection of several level sets is a single vertex
v (as in e.g. 0-1 loss for the uniform distribution), then the only such set can be of dimension 0,
which gives a d > n — 1 lower bound. Intuitively, the feasible subspace dimension bound uses local
characteristics of the property around an examined distribution to give lower bounds, while the
QFP in Definition 37 uses more global information.

Future Work. There are a few threads of future work: the first is to utilize monotonicity to see if
we can construct even tighter lower bounds on embedding dimension. Second, we hope to understand
when, if ever, embedding dimension is not equal to convex calibration dimension. Moreover, the
restriction that we are calibrated over the entire simplex may be tighter than necessary in some

contexts, and would be useful to understand the tradeoff between calibration and dimension of
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a surrogate loss. For one example where we can reduce surrogate dimension with a low-entropy

assumption on the simplex, see Agarwal and Agarwal [6, Example 6].

5.7 Chapter appendix

5.7.1 1-dimensional characterization omitted proofs

We will make substantial use of the following general definition.

Definition 38. A property I' : Ay = R is monotone if there are maps a: R — RY, b: R — RY

and a total ordering < of R such that the following two conditions hold.
(1) For all € R, we have I', = {p € Ay : {a(r),p) <0< (b(r),p)}.
(2) For all r < 1', we have a(r) < b(r) < a(r’) < b(r') (component-wise).

We have a property being orderable if and only if it is monotone since the maps a and b must
define hyperplanes in the simplex in order for the ordering to be complete.

Theorems 11 and 12 follow from the following two results.

Theorem 16. Let ¢ be a discrete loss eliciting a finite property . The following are equivalent: (1)
7 is orderable; (2) the two conditions of Theorem 11 are satisfied; (3) £ is 1-embeddable; (4) v is
monotone. Moreover, when the conditions of Theorem 11 are satisfied, the loss L constructed does

indeed embed ¥.

Proof. We will prove the chain of implications in order.
Orderable — Conditions:

Let v : Ay — 2%\ {(} be finite and orderable. From Lambert [55, Theorem 4], we have
positively-oriented normals v; € RY for all i € {1,...,k — 1} such that v, Ny, = {p € Ay :
(vi,p) = 0}, and moreover, for all i € {2,...,k—1}, we have v, = {p € Ay : (vi—1,p) <0 < (vi,p)},
while v,, = {p € Ay : (v1,p) <0} and v, = {p € Ay : (vk_1,p) < 0}. From the positive orientation

of the v;, we have for all p € Ay that sgn((v;,p)) is monotone in . In particular, it must be that
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for all y, sgn((v;)y) is monotone in 4, taking the distribution with all weight on outcome y, thus
establishing the first condition.

For the second condition, suppose we had A~ (i) < A™(i). Then we would have y,3’ € Y such

that v(i), <0, v(i+ 1)y <0, v(i)y >0, v(i+ 1),y >0,and 0 < v@(j)f)y < U(’l;(j»)ly)l -, which would in
Yy

turn imply [v(i)y|/v(i)y < [v(i+1)y|/v(i+1),. Letting ¢ = 3 ([o(i + 1)y|/v(i + 1)y + [v(d)y|/v(i),)

and taking p to be the distribution with weight 1/(1+ ¢) on y and ¢/(1 + ¢) on ¢/, we see that

(W), ) = 1 (v(i)y + Sl + 1)1 /oli 4+ 1)y + oDl oDy o)y )
> e 00y + (0l (i) )eli)y) = 0
(0(i + 1)) = 7 (0 Dy + 31w+ Dyl /ol + Dy + [o(i)yl/0(i)y )0 (i)y )
< e (0l 1)y + (el + )yl /ol + 1y )l + Dy) =0,

thus violating the observation that sgn((v(i),p)) is monotone in i.
Conditions = 1-embeddable: (correctness of construction)

First, observe that that (i) satisfies A* (i) < A(¢) < A7 (4), and by the second condition,
A(7) > 0 even when either bound is infinite. Thus, A; > 0 for all ¢, and so p(r1) < ... < ¢(rg). By
definition of L, we have L(¢(r1)) = £(r1), and L(p(ri+1)) = £(r:)+Ai-(p(rig1) —(ri)) - (U(rip1)—€(r4))
for all ¢ > 2. Since ¢(ri+1) — ¢(r;) = 1/A; by our construction, we have L(¢(ri+1)) = €(ri+1), so
that £(r) = L(¢(r)) for all r € R. It remains therefore to show convexity of L and the optimality
conditions.

For convexity, note that L is piecewise linear with the only possible nondifferentiable points
being the embedding points ¢(r1),...,p(rk). Let us denote the left and right derivative operators
for real-valued functions by 8~ and 0T, respectively, and write 0= ¢(u) = (97 4(u)y)yey € RY,
and similarly for 7¢(u). To show convexity, then, we need only show 0 £(p(r;)) < 01 l(p(r;))
for all ¢ € {1,...,k}, where the inequality holds coordinate-wise. By construction, we have
O l(p(r1)) = =K1 and 074(p(rg)) = Ax_1 K1, and for i € {1,...,k — 1} we have dT(p(r;)) =
O L(o(rit1)) = Ajw(i + 1). By definition of K, we have 0 £(p(r1)) = —K1 < v(2) = 074(p(r1))

and 07 (o(ry)) = Ap_q1v(k) < A1 K1 = 0T 4(p(ry)).
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It remains to show that for alli € {2,...,k—1} and ally € ), we have A;_1v(i), < Ajo(i+1)y,
which by definition of A is equivalent to v(i), < A(é)v(i+1),. By our first condition, the possible pairs
(sgn(v(i)y),sgn(v(i +1)y)) are (=, —),(—=,0),(—=,+),(0,0),(0,4+), (+,+), and given that (i) > 0,
all are trivial except (—,—) and (+,+). In the (—, —) case, we have by definition of A7 (i) that
A7) < A7 (i) < v(i)y/v(i+ 1)y. Recalling that both v(i), and v(i + 1), are negative, we conclude
v(i)y < A@)v(i + 1)y. In the (+,+) case, we have A(i) > AT(i) > v(i),/v(i + 1)y, and again
v(1)y < A(@)v(i + 1)y,

For optimality, consider any r € R and any p € I',(,y. By the matching of loss values, for
every 1 € R we have (p,£(r)) = (p, L(p(r))) < (p, L(x(r"))) = (p, £(r")), which implies p € ~,. For
the other direction, consider a distribution p € A(Y), and the subgradient of (p, L(y(r;))) for some

i€{2,...,k—1}. We have

0 € d(p, L(p(ri)))

<~
g
= (p,Ai—1v(7)) <0 < (p, Ajw(i + 1))
= (p,v(@)) <0< {pu(i+1))
= (P, £(ri) = L(riz1)) <0 < (p, £(rig1) — £(rq))
= (p, l(r:)) < (p,£(ri—1)) and (p, £(r;)) < (p,£(ris1)) -
For i = 1, similar reasoning gives that optimality is equivalent to the condition (p, £(r1)) < (p,£(r2)),
and for i = k, (p, €(rg)) < (p,€(rk—1)). (Note that the other conditions, —K < 0 or 0 < Ay_1 K, are
true regardless of p.) In particular, if p € 7,,, then we have (p, £(r;)) < (p,€(ri—1)) for i > 2, and
(p, £(r:)) < (p,€(riy1)) for i <k —1, so for all i we have 0 € 9(p, L(¢(r;))) and thus p € ')
Embedding —> Monotone:

We trivially satsify the conditions of Definition 38 by taking a(r;) = 0~ L(y(r)) and b(r;) =
0" L(ep(r)).
Monotone = Orderable:

Let v : Ay — 2R\ {0} be finite and monotone. Then we can use the total ordering
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of R to write R = {ry,...,7,} such that r; < r;y; for all ¢ € {1,...,k — 1}. We now have
Yri VYripr = 1P € Ay : {a(rig1),p) < 0 < (b(ry),p)}. If this intersection is empty, then there must
be some p with (b(r;),p) < 0 and (a(r;+1),p) > 0; by monotonicity, no earlier or later reports can
be in y(p), so we see that v(p) = (), a contradiction. Thus the intersection is nonempty, and as

we also know b(r;) < a(r;4+1) we conclude b(r;) = a(r;11), and the intersection is the hyperplane

defined by b(r;) = a(riy1). O

Throughout the rest of this section, we let propp[L] be the unique property elicited by the

loss L.
Lemma 36. For any convex L : R — R{, the property propp|L] is monotone.

Proof. If L is convex and elicits I, let a,b be defined by a(r), = 0_L(r), and b(r) = 04+ L(r),, that
is, the left and right derivatives of L(-), at r, respectively. Then 0L(r), = [a(r)y, b(r),]. We now
have r € propp[L](p) <= 0€ 9(p,L(r)) <= (a(r),p) <0 < (b(r),p), showing the first condition.
The second condition follows as the subgradients of L are monotone functions (see e.g. Rockafellar

[77, Theorem 24.1]). O

Definition 39. A cell complex in R is a set C of faces (of dimension 0, ...,d) which (i) union to
RY, (ii) have pairwise disjoint relative interiors, and (iii) any nonempty intersection of faces F, F'

in C is a face of F and F' and an element of C.

Definition 40. Given sites s1,...,s; € R? and weights wy, . ..,w; > 0, the corresponding power

diagram is the cell complex given by
cell(s;) = {x € RY:Vj € {1,...,k} |z — 54| —w; < ||z — s5]| — w;} . (5.5)

Theorem 17 ([8]). A cell complex is affinely equivalent to a convex polyhedron if and only if it is a

power diagram.

Lemma 37. Let vy be a finite (non-redundant) property elicited by a loss L. Then the negative Bayes

risk G of L is polyhedral, and the level sets of ~v are the projections of the facets of the epigraph of
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G onto Ay, and thus form a power diagram. In particular, the level sets v are full-dimensional in

Ay (i.e., of dimensionn —1).

Lemma 38. Letv: Ay — 2R\ {0} be a finite elicitable property, and suppose there is a calibrated
link ¢ from an elicitable I' to . For each r € R, define P, = Uuew—l(r) [, C Ay, and let P, denote

the closure of the convex hull of P,. Then v, = P, for allT € R.

Proof. As P, C v, by the definition of calibration, and ~, is closed and convex, we must have
P, C v,. Furthermore, again by calibration of ¢, we must have U,cx Pr = Uyer T'v = Ay, and thus
Urer Pr = Ay as well. Suppose for a contradiction that v, # P, for some r € R. From Lemma 37,
7, has nonempty interior, so we must have some p € %, \ P,. But as U,.cg P» = Ay, we then have
some 1’ # r with p € P, C ~,». By Theorem 17, the level sets of v form a power diagram, and in
particular a cell complex, so we have contradicted point (ii) of Definition 39: the relative interiors

of the faces must not be disjoint. Hence, for all r € R we have v, = P,. O

The preceding statements yield the following proposition.

Proposition 15. If convex L : R — RY indirectly elicits a finite elicitable property v, then v is

orderable.

Proof. Let v : Ay = R. From Lemma 36, I' := propp[L| is monotone. Let ¢ : R — R be the
calibrated link from I to 7. From Lemma 38, we have P, = ~, for all r € R, where P, is the closure
of the convex hull of U,ey-1¢) T'u-

As T is monotone, we must have a,b : R — RY such that P, = {p € Ay : {a(r),p) <0 <
(b(r),p)}. (Take a(r)y = inf,cy-1() a(u)y and b(r), = sup,ecy-1() b(u)y.) Now taking p, € 4, and
picking u, € I'(p,), we order R = {r1,...,r;} so that u,, < u,_, foralliec {1,...,k—1}. (The
up, must all be distinct, as we chose p, so that v(p,) = {r}, so ¥ (u,,) = r; for all 3.)

Let i € {1,...,k — 1}. By monotonicity of I, we must have a(r;) < b(r;) < a(rit1) < b(rit1)-
As Uper Pr = Uyerr = Ay, we must therefore have b(r;) = a(r;41). Finally, we conclude
Yri Ve = {p € Ay = (b(r;),p) = 0}. As these statements hold for all i € {1,...,k — 1}, v is

orderable. ]
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5.7.2 Omitted example

Geometric intuition for QFP on abstain; /3, d =2 In order to prove Proposition 14,
we take some simplifying steps to the quadratic feasibility program for this specific problem. The
strategy is to consider the level set -y, , the set of distributions with modal mass at most 1/2. We
show that the quadratic feasibility program with this input cannot be satisfied with dimension 2 for

n = 5.

Lemma 39. For the abstain loss {9, the level set of abstain satisfies v1 = conv{(dy + dy)/2 :
v, €Y,y <y} ={p: Bp >0} where 6, puts probability one on y and B = 11T — 2T € R>*®  j.c.

has entries —1 on the diagonal and 1 everywhere else.

Proof. Recall that v, is the set of distributions p with max, p, = 1/2. First, note that each
distribution of the form (1/2,1/2,0,0,0) and so on is in v, . Meanwhile, every such p can be written
as a convex combination of these corners. Second, note that if p € v, then p, < 1/2 for all y € Y.

These constraints can be rewritten as (p,b) > 0 where b, = —1 and b, = 1 for all ¢’ # y, literally

requiring py < >_ /2, Dy 0

Observation 1. For any invertible A € R™4 if V.{X7 . j € [(]} is a feasible solution to the

quadratic feasibility program, then so is (VA),{A71X7 . j € [(]}.

Proof. The halfspace constraints are (VA)(A™1X7) < B <= VX7 < B. The j*" vertex constraint
is a vector equality > oy pf (A1 X7), = 0. If we let a,, be the m'™ row of A~1, then the m* row
of the vector equality is

0= 3 pjan )

yey

= {am, > _ pjay)

yey

=0

so the program is feasible. O
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Corollary 16. If there is a feasible solution to the quadratic feasibility program, then there is a

feasible solution where vy is the first standard basis vector and ||v;|| < ||v1]| =1 for all .

Proof. In particular, we can take a series of matrices A in Observation 1 that permute the rows of

V, scale? all rows by m, and linearly map vy to (1,0,...,0). ]

Notation for the quadratic program. Recall that in the quadratic program, each vertex p in
the convex-hull representation corresponds to a matrix variable X. Here, the vertices are indexed
by a pair of distributions, so for each i < j, we refer to that vertex of v, by p¥ = (§; + §;)/2, with

corresponding variable X%“. The yth column of this matrix is denoted x;] € R,

Lemma 40. In any feasible solution to the QFP for v, and £y, we have mzj = —:L";.j foralli < j

n Y.
Proof. Directly from the vertex constraints: p” = %51- + %5j, so the ij constraint reduces to
%Z‘Zj + %x? =0. O

Lemma 41. There is no feasible solution to the QFP for v, and £y, where v; = cvj for ¢ >0 and
any i % j.

Proof. There is an open halfspace through the origin strictly containing both the feasible regions

Fy ={x: (vi,x) < —1,(vj,x) < 1Vj # i} and F}, so there is no set of witnesses such that :L“zj € F;

and xzj € I}, as this would contradict Lemma 40. ]

Lemma 42. For d =2 and the level set vy, for {15, any pair of linearly independent v;, vj rule out
all except for a unique feasible value for x:] and also for l‘;]

Proof. From the halfspace constraints, we must have (v;, :cz] ) < —1and (v, xéj ) < 1, which combines

with Lemma 40 to give (v, xzj ) = 1. This immediately also gives (v;, :cz] ) = —1. This system of two

inequalities in two dimensions has exactly one solution if v;, v; are linearly independent. ]

2 Note one can show V = 0 is not feasible unless B is a trivial property, i.e. essentially has no rows at all.
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Figure 5.6: If 212 # 213, we have a contradic-

Figure 5.5: Example of v;.
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Lemma 43. There is no feasible solution to the QFP for v, and {5 where three vectors v;,vj, v

lie strictly within a halfspace through the origin (i.e. all within 180° of each other).

Proof. Let three of the vectors be given, lying strictly inside a halfspace, and label them clockwise
as v, v2,v3. WLOG suppose v points vertically “up”, as in Figure 5.5. By Lemma 42, the possible
locations of the following points are all uniquely determined: xﬁj, iL‘;j for (4,7) € {(1,2),(1,3),(2,3)}.
Both points x1{? and x{® lie on the line (v1,x) = —1, i.e. a horizontal line below the origin. We
have constraints (ve, x12) = 1 and (v2, #13) < 1. This implies z}? is left of 21? on the horizontal line
{(v1,z) = 1. But the symmetric constraints (vs, z3%) = 1 and (v3, x1?) < 1 imply symmetrically that
712 is left of 2} on the line. This implies we must have x1? = x13. An example of this contradiction
is shown in Figure 5.6.

If we consider the four lines (ve,z) = 1, (v, x) = —1,(v3, x) = 1, (v3,x) = —1, we therefore
have three points of intersection with the line (vy,z) = 1 and three with the line (vy,z) = —1, as
shown in Figure 5.7. WLOG, these points from top left to top right are: z3? (which equals 233), the
intersection with (ve,z) = 1, and the intersection with (vs,z) = 1; and therefore from bottom left
to bottom right are: the intersection with (v3,x) = —1, the intersection with (ve,z) = —1, and the
intersection with z1? (which equals z13).

This implies that the lines (ve,z) = —1 and (v3,x) = 1, in particular, do not intersect
anywhere within the bounds of (vi,z) € [~1,1]. Therefore, either their intersection point 23 or its

23

negative x5° violates the feasibility constraint (v,z) < 1, as in Figure 5.8. This proves there is no

feasible solution with three normals lying strictly in the same halfspace through the origin. O
Proposition 16. The abstain loss {15 with n =15 is not 2-embeddable.

Proof. Let any 5 vectors be given, numbered clockwise. v, v9,vs cannot lie in a cone of strictly less
than 180°, as this would contradict Lemma 43. So the clockwise angle between v; and vs is at least
180°. Since there are no duplicate angles (Lemma 41), this implies that the clockwise angle between

v4 and vy, which includes vs, is strictly less than 180°. This contradicts Lemma 43. O
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5.8 Polytope notes

Here, we recall some additional standard definitions from the theory of convex polytopes.

Definition 41 (Supporting function). Let S be a nonempty bounded set in R We call the

supporting function of S the function Hg : R — R by

Hg(a) := sup(a,z) .
z€S

Definition 42 (Minkowski sum). Let S1,S2, ..., Sy be sets of vectors. We can define their Minkowski

sum as the set of vectors which can be written as the sum of a vector in each set. Namely,
S1®...0S, ={z1+...+zp:x €85, Vi}

Theorem 18 ([86, Theorem 3.1.2]). Let T, ..., T, be polytopes in R? and let F be a face of the
Minkowski sum T :=T1 ® ... ®T,. Then there are faces Fi,...,F, of T1,...,T, respectively such

that F = F} @ ... & F,,. Moreover, this decomposition is unique.

Theorem 19 ([86, Theorem 3.1.6]). The supporting function of a Minkowski sum is the sum of the

supporting functions of its summands.
Weibel [86] notes that:

It is easy to see that the normal fan (undefined here, but consequently normal
cones) of p;T; does not change as long as p; is positive. Since the normal fan of a
Minkowski sum can be deduced from that of its summands, we can deduce from
this that the combinatorial properties of ®,T, stay the same as long as all p; are
positive.

Suppose we are given a polytope T} € R? and set of vectors V € R¥*4. Call ¥ € R* the
vector such that e/ = maxger, (vi, z). For a finite set 7 = {T1,,...,T,}, let us denote the support

matriz E = (e¥)y_;.

Definition 43. We say a set of normals V' is complete with respect to a polytope T, if T, = {x €

RY: Vz < eY}.
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Moreover, we say V is complete with respect to the set of polytopes 7 if and only if V' is
complete with respect to each T, € T.

We will suppose we start with a finite set of n polytopes T := {T1,...,T,}, and we will call
T:=T\®...5T, € R? their Minkowski sum. We know that every polytope has both a halfspace
and vertex representation (H-representation and V-representation, respectively.) By existence of
the H-representation, we know there must be a matrix V € R**? and vector e € R* such that
T ={z € RY: Vz < e}. In fact, with a complete set of normals V', we know that e can be the
support vector of each of the normals. However, finding V' is not always easy, so we assume that we
are given V for now.

Now, for a given polytope ®,7, we want to ask when a given z € R? is in the polytope DpT.
We will later generalize to finding the set of p € Ay for which 0e ®,7T by substituting z = 0.
Throughout, assume we have V' which is complete for 7 and consider E defined by the support of
each normal in V for all T, € 7. We denote €Y = E.;, as the yt" column of E, or equivalently, the
support vector for Ty given V.

Since we define T}, = {z : Vo < €Y}, we can multiply the right side of the inequality by the
constant p, > 0 to yield p,T, = {z : Va < pye?}. Taking the Minkowski sum of polytopes described

by the same set of normals, we can take

®pT = {z:Ve<piEa}®...0{x: Ve <p,E,}
={z: Ve <piE1+...+puEp}

={z:Vz < Ep}.

The first to second line follows from Theorem 19 and preservation of inequalities under addition.
Now, we have z € T(p) <= (v;,2) < (Ep); for all v; € V.

Observe that this construction yields 0 € ®,7 if and only if Ep > 0 by substitution.

We assume p € Ay, so we now describe the cell D(T) := {p € Ay : Ep > 0} as the set of
distributions such that 0 € ®,7. We will see in Lemma 44 that this definition is equivalent to the

definition of D(7) in Definition 36.
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Given the complete set of normals V' and constructing the support matrix for V and T, E,
we observe that F is unique up to rescaling. However, as discussed earlier, there are always multiple
complete sets of normals for 7, and so in that sense, F is not unique.

We want to know the following: starting from 7, can we derive the cell C' C Ay where
0e T(p) for all p € C?7 We know that if we are given 7 and a complete set of normals V', we can

describe D(T) = {p € Ay : Ep > 0}.

Lemma 44. Suppose we are given polytopes T = {T1,...,T,} and a set of normals V' that is
complete for T. Take E = (e!) where €/ = maxyer, (vi,x), and D(T) ={p e Ay : Ep > 0}.

1

Then {p € Ay :0€ @,T}={p€Ay: Ep>0}.

Proof. First, let us fix a distribution p € Ay. By Theorem 19, we have the support of the (weighted)
Minkowski sum is the (weighted) sum of the support of each polytope, which we can re-write the
weighted support as the product Ep.

Each halfspace is bounded by the support function of the weighted polytope by construction
of E, so the support of the weighted polytope defined by an inequality on v; can be described as
(v;, z) < (E;,p). Taking this for all v;, we then have @,7 = {z € R?: Va < Ep}.

Therefore, for fixed p, we have 0 € ®pT < Ep> 0. Aspe Ay was arbitrary, we observe

the stated set equality. O

The following result allows us to consider the sets of distributions for which 0 is in the

Minkowski sum in terms of the minimal rank matrix describing the cell.

Proposition 17. Suppose we are given polytopes T = {T1,..., T} and a set of normals V' that is
complete for T. Take E = (e;,) where e;y = maxger, (v;,x), and take D(T) = {p € Ay : Ep > 0}
and take the minimal rank B € R¥*™ such that we have the given cell C = {p € Ay : Bp > 0}.

Then {p € Ay : 0 € ©,T} = C if and only if C = D(T).

Proof. By Lemma 44, we have D(T) = {p € Ay : 0 € ©,7}, and the result follows. O



135

Definition 44. We say a vector v is redundant with respect to matriz Y if we have {z : Yz > 5} =

{z:[Y;v]z > b*}, where b* = [b; ] for some constant ¢ € R.

Proposition 18. Suppose we have polytopes T = {T1,...,T,,} and a set of normals V' that is
complete for T. Take E = (e!) where ¢! = maxger, (vi,2), and take D(T) = {p € Ay : Ep > 0}
and take the minimal matriz B such that a given cell C = {p € Ay : Bp > 0}.

Then {p € Ay : 0 € ®,T} = C if and only the rows of B appear in E (possibly scaled) and

every other row of E is redundant with respect to B.

Proof. ( = ) First, assume C = {p € Ay : 0 € ®,p,T,}. By Proposition 17, we know that
C=DT :={pecAy:Ep>0}. Then we have {pc Ay :Bp>0}={pcAy:Ep>0}. As B is
minimal, we must have that every row of B appears (possibly scaled) in E. Otherwise, we would
contradict equality of the polytopes C and D(T). Moreover, all rows in £ not in B are redundant
with respect to B by equality of the polytopes.

( <) Suppose that all rows of B appear in E, and every other row of F is redundant with
respect to B. Then we have D(T) ={p € Ay: Ep>0}={pec Ay:Bp >0} =C.

Then D(T) = C, and by Proposition 17, we have C' = {p € Ay : 0 € ©,T}. O



Chapter 6

Lower bounding convex consistency dimension

6.1 Introduction

In § 2.3, we saw that indirect property elicitation is necessary for consistency. Moreover, in
§ 2.4, we saw a few metrics that measure prediction dimension, one of which is the embedding
dimension introduced in Chapter 5. This chapter introduces a tool based on indirect property
elicitation called d-flats that presents lower bounds on convex elicitation complexity, and in turn,
on convex consistency dimension (Definition 11). These results can be applied in any of the settings
introduced in Table 2.1, and we demonstrate this through applications to target problems such as
abstain loss, variance, and conditional value at risk.

This chapter is based heavily on the work of Finocchiaro et al. [30], published at NeurIPS

2021.

6.2 Convex consistency dimension and elicitation complexity

Various works have studied the minimum prediction dimension d needed in order to construct
a consistent surrogate loss L : R¢ x ) — R, typically through proxies such as calibration 6, 71, 82]
and property elicitation [35, 38, 40]. Motivated by the importance of convex surrogates in machine

learning, Ramaswamy and Agarwal [71] introduce the following definition.

Definition 11 (Convex consistency dimension). Given target loss £ : R x Y — R or property
v: P =R, its convex consistency dimension conscyx(-) is the minimum dimension d such that

3L € LG™ and link ¢ such that (L, 1)) is consistent with respect to £ or 7.
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Figure 6.1: Flow and implications of this chapter. Compared to calibration, we suggest indirect
elicitation as a simpler but almost-as-powerful necessary condition for consistency. In particular,
we obtain a testable condition (Theorem 20), based on d-flats, for the existence of a d-dimensional
consistent convex surrogate. This condition recovers and strengthens existing calibration-based
results for Q1, while simultaneously applying to other quadrants. We illustrate the breadth and
power of d-flats by resolving two open questions for Q3 and Q4 in § 6.5.

In the case of a target property 7, Lambert et al. [57] similarly introduce the notion of
elicitation complexity. Later generalized by Frongillo and Kash [40], elicitation complexity is the
lowest prediction dimension of an elicitable property, from some class of properties, from which one

can compute v. We give here the definition for convex-elicitable properties.

Definition 12 (Convex elicitation complexity). Given a target property v, the convez elicitation

complexity elicev () is the minimum dimension d such that there is a L € LG indirectly eliciting

5.
As consistency implies indirect elicitation (Proposition 2), we have the following.

Corollary 17. Given a property v : P == R orloss £ : R x Y — R eliciting v, we have eliccyx(y) <

conSeyx (77) = conscyx (£).

The embedding dimension of Chapter 5 is a lower bound on both convex elicitation complexity

of discrete properties and convex consistency dimension of discrete losses and finite statistics.

6.3 Lower bounding convex consistency dimension via d-flats

We now turn to the question of bounding the convex consistency dimension for a given task.

From Proposition 2, given a target property « or loss ¢ with v = propp[¢], this task reduces to
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lower bounding the convex consistency dimension of v. Theorem 20, crystallized from the proofs of
Ramaswamy and Agarwal [71, Theorem 16] and Agarwal and Agarwal [6, Theorem 9], considers
a particular distribution p and surrogate prediction u € R? which is optimal for p. Theorem 20
will show that if d is small, then the level set {p € P : u € argmin, E,L(v/,Y)} must be large; in
fact, it must roughly contain a high-dimensional flat (of codimension d). By definition of indirect
elicitation, there is some level set 7, (where u is linked to r) containing this flat as well. We can
then leverage the contrapositive of this result: if v has a level set intricate enough not to contain

any high-dimensional flats, then v cannot have a low-dimensional consistent convex surrogate.

Definition 45 (d-flat). For d € N, a d-flat, or simply flat, is a nonempty set F' = kerp W := {q €

P EW = 6} for some measurable W : Y — RY.

The following lemma yields consistency bounds when combined with Proposition 2. A similar
result is found in Agarwal and Agarwal [6, Theorem 9], which bounds the dimension of level sets of
a single-valued propp[L]. Theorem 20 instead bounds the dimension of flats contained in the level

sets, an additional power which we leverage in our examples.

Theorem 20. Let T': P = RY be (directly) elicited by L € LG for some d € N. Let Y be either
a finite set, or Y = R, in which case we assume each p € P admits a Lebesgue density supported
on the same set for allp € P.*  For all u € rangeT" and p € Ty, there is some d-flat F' such that

pe FCT,.

Proof. As L is convex and elicits I', we have u € T'(p) < 0 € OE,L(u,Y). We proceed in two
cases, depending on |Y|.

Finite : If ) is finite, this is additionally equivalent to 0 € ®ypyO0L(u,y), where @ denotes
the Minkowski sum [50, Theorem 4.1.1].2 Expanding, we have @®,p,0L(u,y) = {2 yeypyy | 1y €

OL(u,y) Yy € Y}, and thus Wp = 3 pyz, = 0 where W = [z1,...,2,] € R¥™; ¢f. [71, A™ in

! This assumption is largely for technical convenience, to ensure that V,, does not depend on p. Any such
assumption would suffice, and we suspect even that condition can be relaxed.
2 9 represents the subdifferential 8f(2) = {2 : f(z') — f(z) > (2,2 — x) Va'}.
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Theorem 16]. Let V,,, : Y — RE, 4 W, be the function encoding the columns of W. Observe that
E)Vup =

Y =R: Any L € L3 satisfies the assumptions of [52], so we may interchange subdif-
ferentiation and expectation. Specifically, letting Vy,, = {V : Y — R? | V measurable, V(y) €
OL(u,y) p-a.s.}, we have IE,L(u,Y) = {[ V(y)dp(y) | V € Vup}. As 0 € IE,L(u,Y), in particular,
there is some V,, , € V,p such that E,V,, = 0. For any ¢ € P, as by assumption ¢ is supported on
the same set as p, we have V,, ,(y) € 0L(u,y) g-a.s., so that V;, , € V4. Thus, E,V,, , = 0 implies
0 € OE,L(u,Y’) by the above.

In both cases, we take the flat F' := kerp V, ;,, and have p € F' by construction. To see
F C Ty, from the chain of equivalences above, we have for any ¢ € P that ¢ € kerp V,,,, — 0e

OE,L(u,Y) = uel(q) = qeTl,. 0

Theorem 20 now allows us to derive bounds on convex consistency dimension by considering
distributions and property values that are either single-valued (Corollary 18) or on the relative
interior of the simplex with finite ) (Corollary 19). In order to apply Theorem 20 to various
properties, we need the following lemmas about separating hyperplanes.

First, a hyperplane weakly separates two sets if its two closed halfspaces respectively contain

the two sets.

Lemma 45 ([30, Lemma 2]). If v : P = R is an elicitable property, then for any pair of predictions
r,7" € R where 7, # v, there is a hyperplane H = {x € RY : v -z = 0}, for some v € RY, that

weakly separates v, and v and has v, N H = vy N H =~ N .

Proof. Let ¢ elicit v. Let v = £(r,-) — £(r',-), interpreted as a nonzero vector in RY. Let H = {q :
v-q=0} If v-q <0, then 7’ cannot be optimal, so ¢ & v,». So v,» C {q:v-q > 0}. Symmetrically,
v C{q:v-q <0}. This is weak separation, and it immediately implies that , N~,» C H. Finally,
if and only if v-q¢ = 0, i.e. ¢ € H, by definition the expected losses of both reports are the same. So

geEvwNH <— qge~y.NH. Thisgives v, N H =~ NH =~ Ny NH =~ Ny O
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Lemma 46. Suppose we are given an elicitable property v : P = R, where Y is finite, and
distribution p € relint(P) such that p € v, Ny for r,r' € R. Then for any flat F containing p,

FCrvy <= F Cnp.

Proof. 1If 7, = v, we are done. Otherwise, Lemma 45 gives a hyperplane H = {x € RY : v -2 = 0}
and a guarantee that v, C {qg € Ay : v-q < 0}, while v C {¢g € Ay : v-q > 0}, and finally
Y Ny © H.

Suppose F' C ~,; we wish to show F' C 7,.. Let ¢ € F. By Lemma 47(i), we have p € relintF,
so there exists € > 0 so that ¢ = p —e(q — p) € F.

Now, suppose for contradiction that ¢ & ~,». Then v - ¢ < 0: containment in -, gives v-q <0,
and if v-q =0 then ¢ € NN H = ¢ € ~,, a contradiction. But, noting that p € H, we have
v-q = —€(v-q) >0, s0 ¢ is not in ~,. This contradicts the assumption F' C ~,. Therefore, we
must have ¢ € 7,+, so we have shown F C ~,/. Because r and ' were completely symmetric, this

completes the proof. O
Now we can understand the application of Theorem 20.

Corollary 18. Let target property v : P = R and d € N be given. Let ) be either a finite set,
or Y =R, in which case we assume each p € P admits a Lebesque density supported on the same
set for all p € P. Let p € P with |y(p)| = 1, and take v(p) = {r}. If there is no d-flat F' with

p € F C ., then conscyx(y) > eliceyx(y) > d + 1.

Proof. Let (L, 1) indirectly elicit v, where L € L3, and let I' = propp[L]. As I is non-empty, there
is some u € I'(p). Since 7 is single-valued at p, we have r = ¢)(u); by Theorem 20, we know there is
a d-flat F' = kerp V,,, so that p € FF C T',. By definition of indirect elicitation, we additionally have
'y, € 7. Thus, we have p € F' C ;. If no flat F' satisfies the above conditions, then no L € L3

indirectly elicits v, so eliccyx () > d + 1, and recall conseyx(7y) > eliceyx () by Corollary 17. d

Corollary 19. Let an elicitable target property v : P = R be given, where P C Ay is defined over

a finite set of outcomes Y, and let d € N. Let p € relintP. If there is no d-flat F' with p € F' C ~,,
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then conseyx(7y) > eliceyx(y) > d + 1.

Proof. Let (L,) indirectly elicit v and the convex function L and elicit I'. As I' is non-empty, there
is some u € I'(p), and suppose ' = (u). Take F' C T, to be the flat that exists by Theorem 20.
If r =7/, then p € FF C T, C ~, by indirect elicitation. Otherwise, by Lemma 46, for elicitable
properties with p € 4. N ~,s, we observe p € F C v, <= p € F C .

As above, if no flat F' satisfies the above conditions, then no L € £3"™ indirectly elicits v, so

consSeyx () > eliceyx () > d + 1, recalling Corollary 17 for the first inequality. O

6.3.1 Illustrating the condition in all four quadrants

We now illustrate how to apply Theorem 20 to construct lower bounds on convex consistency
dimension for targets across all four quadrants of Table 2.1. Throughout the examples, we will have
|Y| = 3 so that the probability simplex can be visualized in two dimensions (Figure 6.3). For each,
we take d = 1, and thus ask whether any 1-flat (a line in the figures) passes through the point p
while staying within the corresponding level set.

Q1: Classification with an abstain option. The abstain target loss is a well-studied variation

of 0-1 loss that allows for an “abstain” report that gives a lesser punishment 1/2 for abstaining,
r= 1 [19, 20, 64, 71, 72]. Formally, the target loss is £'/2(r,y) := 1{r & {y, L}} + (1/2)1{r = L}.
Since we are given a discrete target loss, this problem fits nicely into Quadrant 1.

To apply Theorem 20, we first consider the abstain property ~ elicited by ¢'/2, where one
predicts the most likely outcome y if Pr[Y = y] > 1/2 and otherwise “abstains” by predicting L.
For the depicted distribution p € relinty, , we cannot fit a 1-flat (line) fully contained in v, that
passes through p. By Corollary 19, we can conclude conseyy(7'/2) > 2 when || = 3, meaning there
is no consistent convex surrogate in 1 dimension. This lower bound matches the upper bound from
the convex surrogate of Ramaswamy and Agarwal [71].

Q2: Variation of hierarchical classification. Ramaswamy et al. [70] study hierarchical
classification tasks, in which labels are arranged in a tree and one wishes to predict the deepest

node in a tree that is “likely enough” [17, 91]. Consider the variation of this task where one can
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Figure 6.2: Hierarchical prediction ex-

ample with labeling tone of speech. We
Non-active take ) = R to be the leaves of this tree,
| Median | | Passive | shown in blue.

only predict leaves of this tree. For example, Figure 6.2 depicts a speech classification task where
speech is either active or non-active, and non-active is further subdivided into median and passive.
It is natural to predict active if that label is more likely than both non-active labels combined, and

otherwise to predict the most likely of median and passive:

active Pactive Z 1/2

’Y(p) — ) median Pactive < 1/2 A Pmedian = DPpassive *

passive PDactive < 1/2 A Ppassive 2 Dmedian
This “T-shaped” property, depicted in Figure 6.3 (Q2), falls under Quadrant 2, as it is not elicited

by any target loss.?

Like abstain, we cannot fit a 1-flat (line) entirely contained in the level set
Ypassive through the depicted p, so Corollary 19 gives conseyx(y) = 2.

Q3: Least-squares regression Squared loss is commonly used in machine learning and
statistics for continuous estimation, making it the canonical choice for Quadrant 3. Squared loss is
a 1-dimensional convex loss which elicits the mean I'(p) = E,[Y]. Theorem 20 therefore states that
we can fit a 1-flat through any distribution p while staying within the corresponding level set. In
fact, the level sets of the mean are all exactly 1-flats, as demonstrated in Figure 6.3 (Q3).

Q4: Variance Consider the task of estimating the variance Var(p) = E,[Y?] — E,[Y]?. The
variance is not (directly) elicitable as its level sets are not convex [57, 67], meaning this task
falls under Quadrant 4. Interestingly, the fact that the variance is not elicitable does not yield a
lower bound on elicitation complexity of 2, as it does not rule out the variance being a link of a
real-valued convex-elicitable property; cf. Frongillo and Kash [40, Remark 1]. In § 6.5.1, we show

eliceyx(Var) = 2, meaning the lowest dimension of a convex loss to estimate conditional variance is

2. This lower bound will follow from Theorem 21 in § 6.5 using the fact that variance is the Bayes

3 The cells of finite elicitable properties form power diagrams, a generalization of Voronoi diagrams, which disallow
this “T-shaped” configuration [37, 56].
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Figure 6.3: Example properties for each
quadrant. Throughout, we take e to be the
distribution p = (0.3,0.3,0.4) according
to the left, top, and right outcomes respec-
tively. (Q1,Q2) We cannot fit a 1-flat (line)
through p without leaving the level sets
Y1 Y3 passive median 7| and Ymedian, respectively; Theorem 20
implies that there is no 1-dimensional con-

(Q4) y=0 sistent convex surrogate for either problem.
(Q3) Squared error is a 1-dimensional con-
vex loss, and indeed it elicits the mean of
Y, whose level sets are all 1-flats. (Q4)
The level sets of the variance are curved
and cannot fit a 1-flat; from Theorem 20
Y = -1~ To.69 7 y =1 there is no 1-dimensional convex surrogate
consistent for the variance.

risk of squared loss. While perhaps intuitively obvious, even this simple result is novel.

6.3.2 Relation to feasible subspace dimension

In Quadrant 1, Ramaswamy and Agarwal [71] give a lower bound on convex consistency
dimension roughly by the co-dimension of the subspace of feasible directions S¢(p) of a convex set C
at a given distribution p such that p € C, which is loosely the “most full” subspace of C containing a

neighborhood around p.

Sc(p) ={v € R" | ep > 0 such that p + ev € CVe € (—€p, €0)}

Theorem 20 subsumes the bounds given by Ramaswamy and Agarwal [71] by showing that, if
there is a d-flat through p fully contained in a level set v, (so we can apply Theorem 20) then the
subspace of feasible directions at the same p € C := ~, has co-dimension at most d, discussed in

detail in § 6.4.1.

Proposition 19. Suppose we are given a discrete loss £ : R x Y — R eliciting the property
v : Ay = R. Fiz p € relintAy and take r € R such that p € 7. If conscy(f) = d, then

there exists a d-flat I C ~y,. through p. Moreover, F is a subspace of feasible directions over
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the set v, intersected with the simplex. Therefore, codim(S,, (p)) < d, and in turn, this implies

cecdim(f) > d > codim(S,, (p)).

In other words, any d-flat through p is a subspace of feasible directions of co-dimension at
most d, so Theorem 20 provides a weakly tighter lower bound on convex consistency dimension
than Ramaswamy and Agarwal [71, Theorem 16]. In fact, the d-flats bound can be strictly tighter;
in § 6.4 we show that the abstain example from Figure 6.3 (Q1) yields a d-flats lower bound of 2
and a feasible subspace dimension lower bound of 1. This gap stems from the fact that feasible
subspace dimension uses only local information of the property to construct lower bounds, while
d-flats in Theorem 20 allow us to additionally use global information. See Figure 6.4 in § 6.4 for an

illustration.

6.4 Applications in Q1: Previous Lower Bounds and Comparisons

The main known technique for lower bounds on surrogate dimensions is given by Ramaswamy
and Agarwal [71] for the Quadrant 1 (target loss and discrete predictions). The proof heavily builds
around the “limits of sequences” in the definition of calibration. By restricting slightly to the broad
class of minimizable losses L%, we show their bound follows relatively directly from Corollary 19.
(We conjecture that the minimizability restriction to £°¥* can be lifted; see § 6.6.) Ramaswamy and
Agarwal [71] construct what they call the subspace of feasible dimensions and give bounds in terms

of its dimension.

Definition 46 (Subspace of feasible directions). The subspace of feasible directions Sc(p) of a

convez set C CR™ at p € C is S¢(p) = {v € R : ey > 0 such that p+ ev € C Ve € (—ep, €0)}-

Ramaswamy and Agarwal [71] gives a lower bound on the dimensionality of all consistent
convex surrogates, i.e. conseyx(¢) > ||pllo — dim(S,, (p)) — 1 for all p and r € v(p), particularly in
the setting where one is given a discrete prediction problem and target loss over finite outcomes.
It turns out that the subspace of feasible directions is essentially a special case of a flat described

by Theorem 20. So, by making a slight restriction to the class of minimizable convex surrogates
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LV*, we can derive this lower bound from our general technique in a way that we find shorter and

simpler.

Corollary 20 ([71] Theorem 18). Let ¢ : R x Y — R be a discrete loss eliciting v : Ay =2 R with

Y finite. Then for all p € Ay and r € v(p),

conseyx (7) > [|pllo — dim(S'yr (p)) —1. (6.1)

Sketch. If conseyx(7) < d, then there is a L € £ so that L is consistent with respect to ~, and in
turn, indirectly elicits v. Theorem 20 says that there is some d-flat F' = kerp V such that p € F' C ~,.
In particular, if p € relintAy, we can see dim(F) = dim(S,, (p)). Since affhull(Ay) has dimension
Y| — 1 =||p|lo — 1, by rank-nullity and rank (V') < d (more precisely, the corresponding linear map
q — E4V) we have d > ||p|lo — 1 — dim(S,, (p)).

When p ¢ relintAy, we can project down to the subsimplex on the support of p, again of
dimension |[|p|lo — 1, and modify L and ¢ accordingly. Now p is in the relative interior of this
subsimplex, so the above gives conscwx(v) > |Ipllo — 1 — dim(S,, (p)), where now S is relative to
RswP (P) - Finally, the feasible subspace dimension in the projected space is the same as in the

original space because of p’s location on a face of Ay. O

There are some cases where the bound provided by Corollaries 18 and 19 is strictly tighter
than the bound provided by feasible subspace dimension in Corollary 20. For an example of how
Corollary 18 applies to a discrete property for which there is no target loss — a non-elicitable
property, i.e. Quadrant 2, which is not considered by Ramaswamy et al. [72] — we refer the reader
to Figure 6.3.

Example: Abstain Recall the abstain target loss £2%°(r,y) := 1{r & {y, L}} + (1/2)1{r =
1}, we can consider the abstain property it elicits, where one predicts the most likely outcome y
if PrlY = y|z] > 1/2 and “abstain” by predicting L otherwise. Ramaswamy and Agarwal [71]
present a convex surrogate for the abstain loss that takes as input a prediction whose dimension is
logarithmic in the number of outcomes, yielding new upper bounds on conseyy (£***) which are an

exponential improvement over previous results, e.g., [21].
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To lower bound the dimension of convex surrogates, we can consider two different distributions;
in the first, our bound yields a strict gap over the feasible subspace dimension bound, and in the
second, the bounds are equal. First, we choose p = e to be the uniform distribution (see Figure 6.4).
In this case, the bound by feasible subspace dimension yields consey(£2%%) >3 —2 — 1 = 0, as the
feasible subspace dimension is 2 since we are on the relative interior of the level set and simplex, as
shown in Figure 6.4 (L).

However, consider any 1-flat containing e. When intersected with the simplex, one can see
that any line (a 1-flat, since ® € relintAy) in the simplex through e also leaves the cell v, , which
contains p. See Figure 6.4 (R) for intuition; a 1-flat through p € relintAy would be a line in such a
figure. Therefore, we have no 1-flat containing p staying in =y, so we obtain a better lower bound,
CONSeyy (£7%) > 2. Combining this with the upper bounds given by [72], we observe the bound
conSeyx (£2%%) = 2 is tight in this case with || = 3.

Our bounds sometimes match those of [71]; consider the distribution * = (1/4,1/4,1/2), shown
in Figure 6.4. The feasible subspace dimension of both v, and 3 at x is 1, since one only moves
toward the distributions (0,1/2,1/2) and (1/2,0,1/2) without leaving the level sets, and the three
points are collinear in affhull(Ay), suggesting S, (g) = 1. This yields conseyx(£?%*) >3 —1—1=1.
The same line segment defines a flat contained in both v, and 3, so we have cons.yx (E“bs) > 1 by
Corollary 19, matching the feasible subspace dimension bound.

Bounds using d-flats appear to work well at distributions where previous bounds via feasible
subspace dimension would have been vacuous. In essence, flats allow us a “global” view of the
property we are eliciting, while the feasible subspace method only permits a “local” look at the

property, so we find our method works better for distributions in relintAy.

6.4.1 Reconstructing Ramaswamy and Agarwal [71, Thm. 16|

Lemma 47. Let the d-flat F' C P (defined over finite J) contain some p € relint(P). Then

(i) p € relint(F);
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p1 / D3 D1 / P3

Figure 6.4: (Left) Feasible subspace dimension S, (¢) = 2 and S, (x) = 1, giving the bound
conSeyx (£2%) >3 — 1 — 1 = 1. (Right) No 1-flat through e (a line since o € relintAy) stays fully
contained in v, , so (:onscvx(ﬁa”bS ) > 2.

(ii) dim(Sg(p)) > dim(affhull(P)) — d.

Proof. As F is a d-flat, we have some W : ) — R? such that F' = kerp W. Throughout, given
a point (typically a distribution) p and convex set P, we define P, := P — {p}. Define Ty :
span (P,) — R v — E,W.

(i) Since p € relint(P), for all ¢ € P, there is some small enough ¢ > 0 so that for all
a € (—e€,€), the point g, := p — a(q — p) is still in P. In particular, for ¢ € F, we claim ¢, € F. As
p,q € F', we have E,W = E,W = 0. By linearity of expectation, we then have E, W = 0. This
implies ¢, € F', and therefore p € relintF.

(ii) We first show span (F),) = Sp(p). First, take v € Sp(p), and take ¢ as in the definition.
For € = €y/2, we then have p+ev € FF = ev € F),, and therefore, v € span(F},). Now
take v € span (F,). Since p € relintF (i), we have 0 € relintF,. Therefore there is an ey > 0
so that ev € F, for all € € (—ep, €y) by convexity of F. Therefore, v € Sp(p), and we observe
Sr(p) = span (Fp).

We now show Sg(p) = ker(Ty ). Observe that Sp(p) C ker(Ty ) follows trivially from the
definitions of the two functions. Now let v € ker(Tyy), and v’ € F,. This means E,W = 0, so it
suffices to show v = cv’ € F,, thus showing v € Sp(p). Since p € relintP, we must have 0e relint F,
so we know there is some small enough € > 0 so that —av’ € F), for a € (—¢,€). Take ¢ = —a, and

we conclude v € Sp(p). Therefore, ker(Ty) = Sr(p).
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We finally want to show dim(affhull(P)) = dim(span (P,)). Consider that any g € span (Pp)
can be written as a scalar multiple of an element of P,, which can be written as a convex combi-
nation of elements of the minimal basis P,. In particular, since 0e Pp, it can be written as an
affine combination of elements of the basis, so dim(affthull(P)) > dim(span (Pp)). We also have
affhull(P) — {p} C span (Pp), so dim(afthull(P)) = dim(afthull(P) — {p}) < span (P,). Therefore,
dim(afthull(P)) = dim(span (Pp)).

As )Y is a finite set, span (P)) is a finite-dimensional vector space. The rank-nullity theorem
states dim(im (7w )) + dim(ker(7w)) = dim(span (Pp)) = dim(affhull(P)). As dim(im(7w)) < d,

and we have shown above that Sp(p) = span (£F),) = ker(Tw ), the conclusion follows. O

Corollary 20 ([71] Theorem 18). Let £ : R x Y — R be a discrete loss eliciting v : Ay = R with

Y finite. Then for all p € Ay and r € v(p),

conse()  [Ipllo — dim(S,, (p) — 1 . (6.1)

Proof. Let L € L™ be a calibrated surrogate for £, and let T' := propa ,[L]. Consider V' := {y €
Y:p, >0} and p' = (p,)yey € Ayr. Take L' := L]y and ¢ := €|yy. Define h : R — Ry such that
h(q') = q such that g, = g, for y € V" and ¢, = 0 otherwise. Take I' =T o h, 7' =y o h.

We wish to first show L’ indirectly elicits 4. Since L indirectly elicits v, we have a link
¢ such that for all u € R%, Ty C vyw)- As I"(q) = I'(h(g)) and 7'(¢) = y(h(g)), we have
qel, < hq) €Ty = h(q) € W = (qy)yey € ’Yz/ﬂ(u)’ and therefore, L' indirectly elicits
7" via the link v o proj ('), where proj (Y') : ¢ — (qy)yey-

We aim to show dim(S,, (p)) > dim(S,, (p")). We do this by showing that h(S, (p')) € S, (p),
and the result holds as h is linear and injective. Suppose v € h(S,/(p')), then there exists a v' so
that v = h(v') and an €y > 0 such that ev’ +p’ € /. for all € € (—€g, €0). Since h is linear and recall
h(7].) € 7y, this implies ev + p € 7, for all € € (—€g, €9). Therefore v € Sy, (p), and the result follows.

As L' indirectly elicits 7/, by Corollary 19, we know there exists a d-flat F' with p’ € F' C ~/.

Taking P = Ay, we know p’ € relintAys by construction, so we can apply Lemma 47(ii), which
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gives dim(Sp(p')) > dim(affhull(Ay)) —d = [|pllo — 1 — d.*  Additionally, Sp(p') C S, (p') by

subset inclusion of the sets themselves. Chaining these results, we obtain

dim(S,, (p)) > dim(S., (#)) > dim(Sp(p') > pllo — 1~ d..

6.5 Applications in Q3, Q4: Variance, Risk Measures, Mode, and Modal

Interval

We now turn to two main applications of Theorem 20: new lower bounds on the convex
consistency dimension of risk measures (§ 6.5.2) and the mode and modal interval (§ 6.5.3). In both
cases, we build on previous results due to Frongillo and Kash [39, 40] and Dearborn and Frongillo
[22] which showed lower bounds with respect to identifiable properties; a property is d-identifiable if
its level sets are all d-flats, as in Figure 6.3 (Q3). In contrast, properties elicited by convex losses
are generally not identifiable, particularly when the loss is non-smooth. For example, the properties
elicited by hinge loss and the abstain surrogate are not identifiable, as their level sets are not flats;
see Figure 6.3 (Q1). It therefore might appear that entirely new ideas are needed. Indeed, both
papers above pose developing similar bounds with respect to convex-elicitable properties as a major
open question.

Using our d-flats framework, we resolve both open questions with new lower bounds in both
settings. Our framework clarifies the relationship between d-identifiable properties and properties
elicited by d-dimensional convex losses: the level sets of the former are d-flats by definition, while the
level sets of the latter are unions of d-flats by Theorem 20. A careful examination of the arguments
of Frongillo and Kash [39, 40] and Dearborn and Frongillo [22] reveals that they largely rely on the
containment of d-flats in level sets, rather than the full structure of identifiable properties. As such,
although quite subtle in the case of risk measures, the general structure of these previous proofs go

through for convex-elicitable properties: since no d-flat could be contained in a particular level set,

4 To reason about dim(affhull(Ay)) = ||pllo — 1, observe that the uniform distribution on Ay, has full support
and therefore requires ||p|lo — 1 elements in its basis.
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no union of d-flats could be either. Our lower bounds therefore match both of these papers, though

we conjecture that our convex consistency bounds could be tightened in some cases.

6.5.1 Lower-bounding the convex consistency dimension of the variance

Corollary 21. Let P be a set of continuous Lebesgue densities on Y = R with all p € P having
the same support. If there exist p,q,q" € P with E)Y = E)Y # E,Y and Var(p) # Var(q), then

conseyx (Var) = eliceyx (Var) = 2.

Proof. For the upper bound, we may elicit the first two moments via the convex loss L(r,y) =
(r1 —y)? + (r2 — 3?)?, and recover the variance via 1 (r) = 2 — r?, giving eliceyx(Var) < 2. Now
for the lower bound. Without loss of generality, E,Y <E,Y. Let r = %EqY + %]Eq/Y, and define
V:Y—->Ry—y—r. ThenkerpV ={p' € P|E,Y =r} =T, whereI' : p/ — E,Y is the mean.
As E,Y <r <EyY, we conclude E;V < 0 < E, V. We have now satisfied Condition 6 for d = 1.
To apply Theorem 21, it remains to show that Var is non-constant on I',. By our assumptions
and the definition of Var, we have IEPY2 =+ EqY2. Letting p1 = %q + %q’, p2 = %p + %q', we have
E, Y =rfori€ {1,2}, but E, Y2 = E,Y? + $E,Y? # iE, Y2 + L1E,Y? = E,,Y2. As py,po have

the same mean but different second moments, we conclude Var(p;) # Var(pa). O

6.5.2 Risk measures (Q4)

The problem of estimating a risk or uncertainty measure of Y is of central importance in
financial regulation [4, 18, 34] and robust engineering design [13, 76, 80]. Risk measures include the
upper confidence bound E[Y] + \y/Var[Y], or the conditional value at risk (CVaR) defined below in
eq. (6.2), in either conditional or unconditional contexts. Uncertainty measures include the variance,
entropy, or norm of the distribution of Y. Risk and uncertainty measures are typically not elicitable,
so this problem falls under Quadrant 4. Frongillo and Kash [39, 40] give prediction dimension lower
bounds for a broad class of risk and uncertainty measures, namely Bayes risks. As stated above,
these bounds are with respect to identifiable properties, and bounds for convex surrogates are left

as a major open question.
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We resolve this open question using our d-flats framework, giving a matching result for

convex-elicitable properties (Theorem 21). First we recall the definition of the Bayes risk.

Definition 47. Given loss function L : R x Y — R for some report set R, the Bayes risk of L is

defined as L(p) = inf,cr E,L(r,Y').

Condition 6. For some r € rangel’, the level set I', = kerpV is a d-flat presented by some

VY — R such that 0 € int {E,V : p € P}.

Theorem 21. Let P be a conver set of Lebesgue densities supported on the same set for all
p€P. LetT': P — R? satisfy Condition 6 for some r € RY. Let L € L% elicit T' such that L is

non-constant on T'y. Then conscyx (L) > eliceyx (L) > d + 1.

To illustrate the theorem, we briefly apply it to one of the most prominent financial risk
measures, the conditional value at risk (CVaR). Several other applications from Frongillo and
Kash [39, 40], such as other risk measures, entropy, and norms, follow similarly. The authors observe

that CVaR can be expressed as a Bayes risk; for 0 < a < 1, we may define
CVaR,(p) = ggﬂgEP {é(r - Y)L,>y — 'r} , (6.2)

which is the Bayes risk of the transformed pinball loss L, (r,y) = é(r —y)ly>y —r. In turn, L,
elicits the a-quantile, the quantity ¢ (p) such that P,[Y > ¢(p)] = a. Following Frongillo and
Kash [40], we will restrict to the set P, of probability measures over R with connected support
and whose CDFs are strictly increasing on their support, so that ¢, is single-valued. Under mild

assumptions, we find that there is no consistent real-valued convex surrogate for CVaR,.

Corollary 22. Let P be a convex set of continuous Lebesgue densities on Y = R with all p € P
having support on the same interval. If we have p1,pa, p3, ph € P with qa(p1) < qa(p2) < qa(ps) and

CVaR,(p2) # CVaR,(ph), then conseyx(CVaRy) > eliceyx(CVaRy) > 2.

As first shown by Fissler et al. [35], the pair (CVaRy, ¢4 ) is jointly identifiable and elicitable, but

not by any convex loss [33, Prop. 4.2.31]. We conjecture the stronger statement eliccyx(CVaRy) > 3,
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which if true would constitute an interesting gap between elicitation complexity for identifiable and

convex-elicitable properties.

6.5.3 Mode and modal interval (Q4, Q3)

For finite |V, the mode mode(p) = arg max,y p(y) is elicited by 0-1 loss. By contrast, for
Y =R, the mode is not elicitable [49], landing it in Quadrant 4. Defining the mode is subtle for
general distributions; here let us assume p has a smooth and bounded Lesbegue density f,, and
define the mode the same way, mode(p) = arg max,cy fy(y). Dearborn and Frongillo [22] recently
showed a strong impossibility result, that the mode has countably infinite elicitation complexity
with respect to identifiable properties. In other words, it is as hard to elicit the mode as the full
distribution p itself. Complexity with respect to convex-elicitable properties is left as an important
open question.

We resolve this question, with a matching infinite lower bound for convex-elicitable properties.
In light of our d-flats framework, the result is nearly immediate, as the proof in Dearborn and

Frongillo [22] already showed that the level sets of the mode cannot contain any d-flats.

Theorem 22 ([30, Theorem 3|). The mode has consgyx(mode) = eliceyx(mode) = oo (countably
infinite) with respect to P, the class of probability measures on Y = R with a smooth and bounded

density and such that mode is single-valued.

Proof. The proof of Dearborn and Frongillo [22, Theorem 1] gives a distribution p € P with
mode(p) = 0 =: u. It then introduces an arbitrary identification function V : RxY — Rk,
k € N, and value r € R such that p € kerp V(r,-). Letting F' = kerp V(r,-), we therefore have an
arbitrary k-flat containing p. The proof then proceeds to construct some p’ € F' with mode(p’) # u.
Corollary 19 now gives conseyx(mode) > eliceyx(mode) > k + 1. As k was arbitrary, the result

follows. o

A closely related property for any g > 0 is the (midpoint of the) modal interval of width 23,

given by vg(p) = argmax,cp p([z — 5,z + (]). Interestingly, unlike the mode for J = R, the modal
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interval is elicitable, by the target loss ¢g(r,y) = 1{|r —y| > B}. The problem of estimating the
modal interval therefore could be thought of as falling under Quadrant 3.

As observed in Dearborn and Frongillo [22, Corollary 1], the properties mode and g coincide
with the family of distributions needed in their Theorem 1, meaning the conclusion of Theorem 22

transfers to the modal interval as well.

Corollary 23. For any 8 > 0, the modal interval v : Pg — R has conseyx(75) = elicevx(73) = 00
(countably infinite) with respect to Pg, the class probability measures on Y =R with a smooth and

bounded density, and such that mode and g are single-valued.

Thus, while 3 is elicitable, it does not have any consistent finite-dimensional convex sur-
rogate. While this statement may seem counter-intuitive, recall that the mode for finite |Y| has
conscyx(mode) = |Y| — 1. Taking the limit as || — oo, one may therefore expect an infinite convex

consistency dimension for both the mode and modal interval.

6.6 Chapter conclusion

This chapter introduces d-flats, a tool to generate lower bounds on the convex consistency
dimension of general prediction tasks. This tool is simultaneously broader, stronger, and easier to
understand than previous results. Its breadth is demonstrated by applying to multiple problem
types simultaneously (§ 6.3), while its strength is demonstrated by proving new bounds on convex
consistency dimension (§ 6.5), and ease is apparent when observing that indirect elicitation is a
strictly weaker notion than calibration — the most common proxy for consistency. We then apply
our framework to yield new bounds on convex consistency dimension for entropy, risk measures, the
mode, and modal intervals.

Several important questions remain open. Particularly for the discrete settings, we would
like to know whether one can lift the restriction that surrogates always achieve a minimum; we
conjecture positively. The observation that our bounds are as tight as calibration-based bounds,

yet we use the weaker condition of indirect elicitation, motivates the study of how much weaker
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indirect elicitation is than calibration. More broadly, we would like to characterize cons.,x and
eliceyx and develop a general framework for constructing surrogates achieving the best possible

prediction dimension.

6.7 Chapter appendix

6.7.1 Proof of Theorem 21

Throughout this section, we will assume P is convex. See Frongillo and Kash [40, §E.5] for a
discussion of how to relax this assumption.
6.7.2 General setting of elicitation complexity

We briefly introduce the general notion of elicitation complexity, of which Definition 12 is a

special case, as some statements are more naturally made in this general setting.
Definition 48. I refines I' if for all v’ € rangeI” there exists r € rangel" with I}, C T,.

Equivalently, I" refines T" if there is a link function ¢ : rangeI” — range I such that I'/, C | )

for all 7’ € rangeI”.

Definition 49. For k € NU {co}, let & (P) denote the class of all elicitable properties T : P — R¥,

and E(P) = Ukenufoo} €k(P). When P is implicit we simply write £.

Definition 50. Let C be a class of properties. The elicitation complexity of a property I' with respect
to C, denoted elice(T), is the minimum value of k € NU {oco} such that there exists I' € C N E,(P)

that refines I.

6.7.3 Supporting statements

Proposition 20 (Osband [67]). Let I be elicitable. Then I’y is convex for all r € rangeT .

Lemma 48 (Set-valued extension of Frongillo and Kash [40, Lemma 4]). If I refines T' then

elice(I”) > elice(T).
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Proof. As I refines I', we have some 1) : range IV — rangeI" such that for all 7’ € range I we have
I, C I'yq). Suppose we have [ € C and Y range" — rangeI” such that for all v € rangel
we have I';, C F:O(u). Then for all v € rangef‘ we have I', C Ffp(u) C T'(yoy)(u)- In particular, if

elice(I") = m, then we have such a ' : P = R™, and hence elice(T) < m. O

Lemma 49 (Frongillo and Kash [40, Lemma 8]). Suppose L € L elicits I : P — R and has Bayes
risk L. Then for any p,p’ € P with T'(p) # T'(p), we have L(Ap+ (1 — \)p') > AL(p) + (1 — N\)L(p')

for all X € (0,1).

Lemma 50 (Adapted from Frongillo and Kash [40, Theorem 4]). If L elicits a single-valued T, and

I' refines L, then I refines I

Proof. Suppose for a contradiction that I" does not refine I'. Then we have some u € rangef such
that for all » € range " we have I ¢ T',.. In particular, recalling that T" is single-valued, we must
have p,p’ € I, such that I'(p) # I'(p'). Moreover, as I' refines L, we also have L(p) = L(p'). From
Lemma 49 and A = 1/2 we have L(q) > 1L(p) + 3 L(p') = L(p), where ¢ = 3p+ 1p/. As the level set

I', is convex by Proposition 20, we also have ¢ € I',, and hence L(q) = L(p), a contradiction. [J

Lemma 51 (Minor modifications from Frongillo and Kash [40]). Let V be a real vector space. Let
f:V — RF be linear and C C V conver with span C =V, and let m € N. Suppose that 0 € int f(C),
and for all v € S := C Nker f, there exists a linear fv VYV = R™ withv € C ﬂkerfv C S. Then

m > k. If m =k, we additionally have 0 € int fv(C’) for some v € S.

Proof. The condition 0 € int f(C) is equivalent to the existence of some vy,...v54; € C such
that 0 € intconv{f(v;) : ¢ € {1,...,k + 1}}. Let ay,...,ap+1 > 0, Zfill o; = 1, such that
Zfill a;f(v;) = 0. As these are barycentric coordinates, this choice of «a; is unique, a fact which
will be important later. We will take v = Zfill ;v;, an element of C by convexity, and thus an
element of S as f(v) = 0.

Let fv : ¥V — R™ be linear with v € § := Cﬁkerfv CS. Let By,...,8k+1 €R, Zfill Bi =0,

such that thll ﬁifv(vi) = 0. We will show that the 5; must be identically zero, i.e. that {fy(vz) :

(2
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i€ {l,...,k 4+ 1}} are affinely independent. By construction, v’ := Zfill Biv; € ker f,, and as

v € ker f,, for all A > 0 we have vy := v+ A/ = Zfill (a; + ABi)v; € ker fy. Taking X sufficiently
small, we have v; := a; + A\3; > 0 for all ¢, and Zfill Y = Zfill a; + )\Zfill B; = 1. By convexity
of C, we have vy € C. Now vy € C Nkerf, C S = CnNkerf, and in particular vy € ker f. Thus,
fluy) = Zfill ~if(v;) = 0. By the uniqueness of barycentric coordinates, for all i € {1,... k+ 1},
we must have v; = «; and thus ; = 0, as desired.

As fU(C) contains k + 1 affinely independent points, we have m > dimimjf, > k. When
m = k, by affine independence, the set conv{f,(v;) : i € {1,...,k + 1}} has dimension k in

RF. As 0 = f,(v) = ¥ aify(v), and oy > 0 for all i, we conclude 0 € int conv{f,(v;) : i €

{1,...,k+1}} Cint £,(C). O

Lemma 52 (Frongillo and Kash [40, Lemma 14]). Let V be a real vector space. Let f:V — RF be

linear, C CV convex with spanC =V, and let S = C Nker f. If 0 € int f(C) then span S = ker f.

6.7.4 Proving the lower bound for Bayes risks

Let C} be the class of properties I' which are elicited by a convex loss L € L5 for some d € N,
and let C* := Jgen Cj- Then for all properties v, if elice« () < oo, we have elice(7) = eliceyx (), a

fact we use tacitly in the proof.

Theorem 21. Let P be a conver set of Lebesgue densities supported on the same set for all
pE€P. LetT': P — R? satisfy Condition 6 for some r € RY. Let L € L& elicit T' such that L is

non-constant on T'y. Then conscyx (L) > eliceyx (L) > d + 1.

Proof. Let V : Y — R% and r be given by the statement of the theorem and from Condition 6. Let
m = elice (L), so that we have I' € ¥, which refines L. By Lemma 50 we have I refines T.

We now establish the conditions of Lemma 51 for C = P. Let f : spanP — R%, p — E,V.
From Condition 6, we have 0 € int f(P) and ker f NP = kerp V =T',.. Now let p € I, be arbitrary,
and take any u € f‘(p) As I is single-valued, r € rangeI is the unique value with p € I',.. As r

refines I', there exists r’ € rangeI" with I, C I',/, and since p € fu, we conclude ' = r from the
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above. From Theorem 20, we have some Vu,p with p € kerp Vuyp CT, CT, =kerp V. Letting
fp :spanP — R?, p — Epf/u,p, we have now satisfied the conditions of Lemma 51. We conclude
m > d, and moreover, if m = d, then there exists some ¢ € T, such that 0 € int fq(P).

Now suppose m = d for a contradiction. Let S := ker fq¢ NP. Applying Lemma 52 to
the functions f and fq we have span ker f = spanI’, and span ker fq = span S. As S C J
we have ker fq = spanS’ C spanl', = ker f. By the first isomorphism theorem, we also have
codim ker fq = codimker f = d, as the images of these linear maps span all of R%. By the third
isomorphism theorem we conclude I';, = S. Moreover, as S - fu CTI,, we have S = fu =TI,.

We now see that L is constant on I', since there is some link function ¢ : R™ — R such that
r,=I,C L), meaning L(p) = ¢ (u) for all p € I';. This statement contradicts the assumption

that L is non-constant on I',. ]
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