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Empirical Risk Minimization (ERM)
Find hypothesis h∗ so that

h∗ = arg min
h∈H

∑
(x,y)∈data

L(h(x), y) (1)

Definition 1: Elicits
A loss function L : R×Y → R elicits a property Γ if for all p ∈ P ,

{Γ(p)} = arg min
r

EY∼pL(r, Y ) .

Definition 2: Identifies

V : R×Y → R identifies Γ : P → R if, for all r ∈ R̊ and p ∈ P

EY∼p [V (r, Y )] = 0 ⇐⇒ r = Γ(p)

Steinwart et al. (2014) and Lambert (2018) show identifiable ⇐⇒ elic-
itable for continuous, nowhere-locally-constant, real-valued properties.

RESULTS

Theorem 1: Elicitable ⇐⇒ Convex elicitable
For P = ∆(Y), let Γ : P → R be a continuous, nowhere-locally-
constant property which is identified by a bounded and oriented V :

R× Y → R. If F = {V (·, y)}y∈Y satisfies Condition 1 (below), then Γ

is convex elicitable.

PROOF INTUITION

•L(r, y) =
∫ r

0 λ(x)V (x, y)dx elicits Γ for λ : R → R>0

– Steinwart et al. (2014) and Lambert (2018)
• If λ(r)V (r, y) is increasing inR for all y ∈ Y , then EpL(r, Y ) is a convex

combination of convex functions.
•What are the conditions on {V (r, y)}y∈Y so that we can design λ where

the above is true?
Consider the following three simple Conditions:

Condition 1’.1 Every f ∈ F is continuously differentiable.
Condition 2’. Each f ∈ F has a single zero, and moves from negative to
positive.
Condition 3’. When f > 0 > g, the ratio g/f is increasing.

TWO OUTCOMES

•Consider f > 0 > g

λ(r) = (−f (r)g(r))−1/2.

Then

(λf )(r) =
√
−f (r)/g(r) (λg)(r) =

√
−g(r)/f (r)

•Focus on the “most decreasing” and “least increasing” functions.

EXAMPLES

BETA FAMILIES (BUJA ET AL. (2005))

V (r, y) = rα−1(1− r)β−1(r − y), L(r, y) =

∫ r

0

zα−1(1− z)β−1(z − y)dz

•Log loss (α = β = 0) and squared loss (α = β = 1).
•λ(r) = r1/2−α(1− r)1/2−β yields:

V ′(r, y) = r1/2(1− r)1/2(r − y)

L′(r, y) = arcsin(
√
|y − r|)−

√
r(1− r)
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Figure 1: L′(r, 0)
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Figure 2: L′(r, 1)

A QUADRATIC PROPERTY

•Natural choice for V (r, y) is V (r, 1) = r − 1, V (r, 2) = 1
2 + r − r2,

V (r, 3) = r.
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Figure 3: V (·, 1)
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Figure 4: V (·, 2)
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Figure 5: V (·, 3)
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Figure 6: Level sets
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Figure 7: λ(·)V (·, 1)
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Figure 8: λ(·)V (·, 2)
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Figure 9: λ(·)V (·, 3)
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Figure 10: m,h,m

CONSTRUCTING λ

•L(r, y) =
∫ r

0 λ(x)V (x, y)dx elicits Γ given weight function λ : R → R>0.

•Design λ(r) so that λ(r)V (r, y) increasing in r for each y ∈ Y
– Find bounds on h.
– Search over “simple” class of functions and select h that fits bounds

λ(r) = exp

(∫ r

0

h(r)dr

)

SCORING RULE MARKETS

•Lambert et al. (2008) generalizes the prediction market framework to
Scoring Rule Market (SRM).

•Given loss L(r, y) and initial central prediction r0, each trader updates the
central prediction rt−1→ rt, and suffers loss L(rt, y)− L(rt−1, y).

•Abernethy and Frongillo (2011) and Frongillo and Waggoner (2018)

– Tractable Trade
– Bounded Trader Budget

•Which properties have SRMs following these axioms?
Essentially every continuous real-valued property over finite outcomes.

FUTURE WORK

•Relaxing our conditions
• Infinite outcomes

•Strongly convex losses
•Vector-valued properties

Summary
•Elicitable ⇐⇒ convex elicitable
• “Monotonize” the identification and integrate
•Essentially every continuous, real-valued property has a SRM that can

be efficiently computed and allows players with arbitrarily small bud-
get to participate in the market.
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1Relaxed in the paper to allow for nondifferentiable points.


