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Empirical Risk Minimization (ERM)
Find hypothesis A™ so that

" = arg min Z L(h (1)

e (x,y)Edata

Definition 1: Elicits
A loss function L : R x Y — R elicits a property ' if for all p € P,

{I'(p)} = argminEy.,L(r,Y) .

r

Definition 2: Identifies
ViR x )Y — Ridentifies|' . P — Rif, forall r € 703andp c P

Ly V(rY) =0 <= r=TI(p)

Steinwart et al. (2014) and Lambert (2018) show 1dentifiable <—— elic-
itable for continuous, nowhere-locally-constant, real-valued properties.

RESULTS

Theorem 1: Elicitable <—— Convex elicitable

For P = A(Y), let ' : P — R be a continuous, nowhere-locally-
constant property which 1s identified by a bounded and oriented V' :

R xY — R.If F={V(,y)},ey satisfies Condition 1 (below), then I
1s convex elicitable.

PROOF INTUITION

o L(r,y) = [, M)V (z,y)dz elicits I" for A : R — R
— Steinwart et al. (2014) and Lambert (2018)

o [f \(r)V(r,y) is increasing in R for all y € Y, then E,L(r, Y) is a convex
combination of convex functions.

e What are the conditions on {V (r,y)},ecy so that we can design \ where
the above is true?

Consider the following three simple Conditions:
Condition 1’.! Every f € F is continuously differentiable.

Condition 2’. Each f € F has a single zero, and moves from negative to
positive.
Condition 3’. When f > 0 > ¢, the ratio g/ f is increasing.

TWO OUTCOMES

e Consider f >0 > g

A(r) = (£ (r)g(r) ™"
Then

= /= f(r)/q(r) (Ag)(r) = /=g(r)/ f(r)

e Focus on the “most decreasing” and “‘least increasing’ functions.

EXAMPLES

BETA FAMILIES (BUJA ET AL. (2005))

Viry)=r""'(1=r)""(r—y), L(r,y) = /O 21— 2)"" Yz — y)dz

e Log loss (a« = 8 = 0) and squared loss (v = 5 = 1).
o \(1) = r1/272(1 — r)/>=F yields:

= 1) (e — )

Vr(l—r)

Vi(r,y)
L'(r,y) = arcsin(+/|y — r]) —

Relaxed in the paper to allow for nondifferentiable points.
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Figure 1: L'(r,0) Figure 2: L'(r, 1)

A QUADRATIC PROPERTY

e Natural choice for V(r,y) is V(r,1) = r — 1, V(r,2) = %
Vi(r,3) =

Figure 6: Level sets
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Figure 10: m, h,m

CONSTRUCTING )\

o L(r,y) f()
e Design A\(r) so that A\(7)V (r, y) increasing in r for eachy € )

—Find bounds on A.

—Search over “simple” class of functions and select h that fits bounds

A(r) = exp ( /O T h(r)dr)

SCORING RULE MARKETS

V(x,y)dx elicits I' given weight function A : R — R.,.

e Lambert et al. (2008) generalizes the prediction market framework to
Scoring Rule Market (SRM).

e Given loss L(r, y) and initial central prediction r(, each trader updates the
central prediction r;_; — 1y, and suffers loss L(r;,y) — L(r;_1,y).

e Abernethy and Frongillo (2011) and Frongillo and Waggoner (2018)

—Tractable Trade
—Bounded Trader Budget

e Which properties have SRMs following these axioms?

Essentially every continuous real-valued property over finite outcomes.

FUTURE WORK

e Relaxing our conditions e Strongly convex losses

e Infinite outcomes e Vector-valued properties

Summary
e Elicitable <> convex elicitable
e “Monotonize” the identification and integrate

e Essentially every continuous, real-valued property has a SRM that can
be efficiently computed and allows players with arbitrarily small bud-
get to participate 1n the market.
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