Convex Elicitation of Continuous Properties

Jessica Finocchiaro \& Rafael Frongillo University of Colorado, Boulder
\{jessica.finocchiaro,raf\}@colorado.edu

Empirical Risk Minimization (ERM)

Find hypothesis h^{*} so that

$$
\begin{equation*}
h^{*}=\underset{h \in \mathcal{H}}{\arg \min } \sum_{(x, y) \in \operatorname{data}} L(h(x), y) \tag{1}
\end{equation*}
$$

Definition 1: Elicits

A loss function $L: \mathcal{R} \times \mathcal{Y} \rightarrow \mathbb{R}$ elicits a property Γ if for all $p \in \mathcal{P}$,
$\{\Gamma(p)\}=\arg \min \mathbb{E}_{Y \sim p} L(r, Y)$.

Definition 2: Identifies

$V: \mathcal{R} \times \mathcal{Y} \rightarrow \mathbb{R}$ identifies $\Gamma: \mathcal{P} \rightarrow \mathcal{R}$ if, for all $r \in \mathcal{R}$ and $p \in \mathcal{P}$

$$
\mathbb{E}_{Y \sim p}[V(r, Y)]=0 \Longleftrightarrow r=\Gamma(p)
$$

Steinwart et al. (2014) and Lambert (2018) show identifiable \Longleftrightarrow elicitable for continuous, nowhere-locally-constant, real-valued properties

Results

Theorem 1: Elicitable \Longleftrightarrow Convex elicitable

For $\mathcal{P}=\Delta(\mathcal{Y})$, let $\Gamma: \mathcal{P} \rightarrow \mathcal{R}$ be a continuous, nowhere-locallyconstant property which is identified by a bounded and oriented V $\mathcal{R} \times \mathcal{Y} \rightarrow \mathbb{R}$. If $\mathcal{F}=\{V(\cdot, y)\}_{y \in \mathcal{Y}}$ satisfies Condition 1 (below), then Γ is convex elicitable.

Proof intuition

- $L(r, y)=\int_{0}^{r} \lambda(x) V(x, y) d x$ elicits Γ for $\lambda: \mathcal{R} \rightarrow \mathbb{R}_{>0}$
-Steinwart et al. (2014) and Lambert (2018)
- If $\lambda(r) V(r, y)$ is increasing in \mathcal{R} for all $y \in \mathcal{Y}$, then $\mathbb{E}_{p} L(r, Y)$ is a convex combination of convex functions.
- What are the conditions on $\{V(r, y)\}_{y \in \mathcal{Y}}$ so that we can design λ where the above is true?
Consider the following three simple Conditions:
Condition 1'. ${ }^{1}$ Every $f \in \mathcal{F}$ is continuously differentiable.
Condition 2'. Each $f \in \mathcal{F}$ has a single zero, and moves from negative to positive.
Condition 3'. When $f>0>g$, the ratio g / f is increasing.

Two outcomes

- Consider $f>0>g$

$$
\lambda(r)=(-f(r) g(r))^{-1 / 2}
$$

Then

$$
(\lambda f)(r)=\sqrt{-f(r) / g(r)} \quad(\lambda g)(r)=\sqrt{-g(r) / f(r)}
$$

- Focus on the "most decreasing" and "least increasing" functions.

EXAMPLES

BETA FAMILIES (BUJA ET AL. (2005))

$V(r, y)=r^{\alpha-1}(1-r)^{\beta-1}(r-y), L(r, y)=\int_{0}^{r} z^{\alpha-1}(1-z)^{\beta-1}(z-y) d z$

- $\log \operatorname{loss}(\alpha=\beta=0)$ and squared loss $(\alpha=\beta=1)$.
- $\lambda(r)=r^{1 / 2-\alpha}(1-r)^{1 / 2-\beta}$ yields:

$$
\begin{aligned}
V^{\prime}(r, y) & =r^{1 / 2}(1-r)^{1 / 2}(r-y) \\
L^{\prime}(r, y) & =\arcsin (\sqrt{|y-r|})-\sqrt{r(1-r)}
\end{aligned}
$$

Figure 1: $L^{\prime}(r, 0)$

Figure 2: $L^{\prime}(r, 1)$

A QUADRATIC PROPERTY

- Natural choice for $V(r, y)$ is $V(r, 1)=r-1, V(r, 2)=\frac{1}{2}+r-r^{2}$, $V(r, 3)=r$.

Constructing λ

- $L(r, y)=\int_{0}^{r} \lambda(x) V(x, y) d x$ elicits Γ given weight function $\lambda: \mathcal{R} \rightarrow \mathbb{R}_{>0}$.
- Design $\lambda(r)$ so that $\lambda(r) V(r, y)$ increasing in r for each $y \in \mathcal{Y}$
-Find bounds on h.
-Search over "simple" class of functions and select h that fits bounds

$$
\lambda(r)=\exp \left(\int_{0}^{r} h(r) d r\right)
$$

Scoring Rule Markets

- Lambert et al. (2008) generalizes the prediction market framework to Scoring Rule Market (SRM).
- Given loss $L(r, y)$ and initial central prediction r_{0}, each trader updates the central prediction $r_{t-1} \rightarrow r_{t}$, and suffers loss $L\left(r_{t}, y\right)-L\left(r_{t-1}, y\right)$.
- Abernethy and Frongillo (2011) and Frongillo and Waggoner (2018)
- Tractable Trade
-Bounded Trader Budget
- Which properties have SRMs following these axioms?

Essentially every continuous real-valued property over finite outcomes.

Future Work

- Relaxing our conditions
- Infinite outcomes
- Strongly convex losses
- Vector-valued properties

Summary

\bullet Elicitable \Longleftrightarrow convex elicitable

- "Monotonize" the identification and integrate
- Essentially every continuous, real-valued property has a SRM that can be efficiently computed and allows players with arbitrarily small budget to participate in the market.

This project was funded by National Science Foundation Grant CCF-1657598.

