Unifying Lower Bounds on Prediction Dimension via Convex Surrogates

Jessie Finocchiaro, Rafael Frongillo, Bo Waggoner University of Colorado Boulder

Introduction

A loss function is called a *surrogate* when it is used to solve a related, but not identical "target" problem of interest. Selecting a hypothesis by minimizing surrogate risk is one of the most widespread techniques in supervised ML. There are two main reasons why a surrogate loss is necessary: (I) the target problem is to minimize a loss, which does not satisfy some desiderata such as continuity or convexity, or (II) the target problem is some statistic, and no loss is given. We present a framework that applies to both settings simultaneously and apply it to study *low-dimensional* convex surrogate losses.

Notation

\mathcal{R} , \mathbb{R}^d	Reports: discrete, surrogate
$\mathcal{Y}, p \sim \mathcal{P} \subseteq \Delta_{\mathcal{Y}}$	Outcomes, set of distributions
$\ell(r, y), L(u, y)$	Discrete, surrogate loss
$\Gamma: \mathcal{P} \to \mathbb{R}^d$	Surrogate property
$\forall p \in \mathcal{P}, \Gamma(p) = argmin_{u \in \mathbb{R}^d} \mathbb{E}_{Y \sim p} L(u, Y)$	Loss elicits property
$\Gamma_r = \{ p \in \mathcal{P} \mid r \in \Gamma(p) \}$	Level set of property

Four types of problem

	Target loss	Target statistic
Discrete prediction	Q1, e.g. classification	$\mathbf{Q2}$, e.g. hierarchical classification
Continuous estimation	Q3, e.g. least-squares regression	$\mathbf{Q4}$, e.g. variance estimation

<u>Goal</u>

Given a target loss or statistic, lower bound on the dimension d of any consistent convex surrogate $L : \mathbb{R}^d \times \mathcal{Y} \to \mathbb{R}$.

Roadmap of Results

Example Application of Results

Definitions

<u>Convex prediction dimension</u>: The minimum dimension *d* such that a convex $L: \mathbb{R}^d \times \mathcal{Y} \to \mathbb{R}_+$ is consistent/calibrated/elicits the task at hand.

The <u>*d*-flat</u> is a nonempty set $F = \{p \in \mathcal{P} \mid \mathbb{E}_p V = \vec{0}\}$ parameterized by the measurable function $V: \mathcal{Y} \to \mathbb{R}^d$.

Lower bound via d-flats

If a surrogate elicits a property Γ , then for all $p \in \mathcal{P}$, $u \in \Gamma(p)$, there is a d-flat F containing p such that $F \subseteq \{p \in \mathcal{P} \mid u \in \Gamma(p)\}$

New lower bounds

<u>Continuous estimation problems (Q3,Q4)</u>: Let dim(Γ) = convex consistency dimension.

- dim(Conditional Value at Risk) ≥ 2
 - Solves an open problem in statistics/finance
- dim(Mode) = dim(Modal interval) = ∞
 - Solves an open problem in statistics

Discrete Prediction (Q1, Q2):

Subsume [RTA16] feasible subspace dimension result, and in some cases strict improvement.

Unifying Lower Bounds on Prediction Dimension via Convex Surrogates

Jessie Finocchiaro, Rafael Frongillo, Bo Waggoner University of Colorado Boulder

