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Introduction

A loss function is called a surrogate when it is used to solve a
related, but not identical “target” problem of interest. Selecting a
hypothesis by minimizing surrogate risk is one of the most
widespread techniques in supervised ML. There are two main
reasons why a surrogate loss is necessary: () the target problem is

to minimize a loss, which does not satisfy some desiderata such as
continuity or convexity, or (1) the target problem is some statistic,
and no loss is given. We present a framework that applies to both
settings simultaneously and apply it to study low-dimensional
convex surrogate losses.

Notation
R, R% Reports: discrete,
surrogate
Yp~PCS Ay Outcomes, set of
distributions
£(r,y),L(w,y) Discrete, surrogate loss
Ir:? - R4 Surrogate property

Vp € P,T(p) = argmin, cpaEy ., L(u,Y) Loss elicits property

I,={pePIrel(p)} Level set of property

Four types of problem

Target loss Target statistic
Discrete e . . o
L Q1. e.g. classification Q2, e.g. hierarchical classification
prediction
‘ontinuous : . : :
C nkntiotis Q3. e.g. least-squares regression Q4, e.g. variance estimation
estimation

Given a target loss or statistic, lower bound on the dimension d of
any consistent convex surrogate L : R% x Y- R

Roadmap of Results

C CCVX

conscyx bounds for

Q1, Q2. (Cor. 6)

Consistency

conscvx bounds for

Calibration (Q1) Q3, Q4. (Thm. 2,

3)

Example Application of Results
(Q1) Y2 (Q2) active

N Y3 passive median

Q1) y=0

Definitions

Convex prediction dimension: The minimum
dimension d such that a convex L: R x Y — R, is

consistent/calibrated/elicits the task at hand.

The d-flat is a nonemptyset F = {p € P | E,V =

6} parameterized by the measurable function
V:Y - R%

Lower bound via d-flats

If a surrogate elicits a property I, then forall p €
P,u € I'(p), there is a d-flat F containing p such
that FS {peP |lueTl(p)}

New lower bounds

Continuous estimation problems (Q3,Q4):
Let dim(I") = convex consistency dimension.
* dim(Conditional Value at Risk) > 2
* Solves an open problem in
statistics/finance
* dim(Mode) = dim(Modal interval) = co
* Solves an open problem in statistics

Discrete Prediction (Q1, Q2):

Subsume [RTA16] feasible subspace dimension
result, and in some cases strict improvement.
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