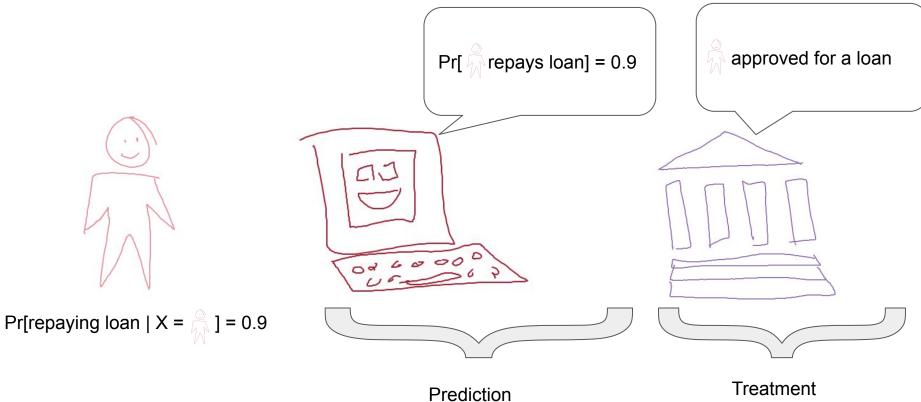
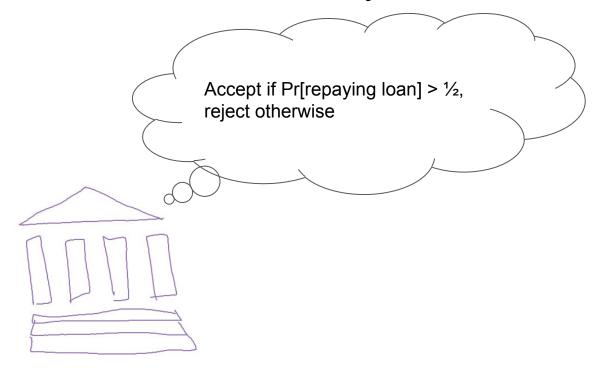
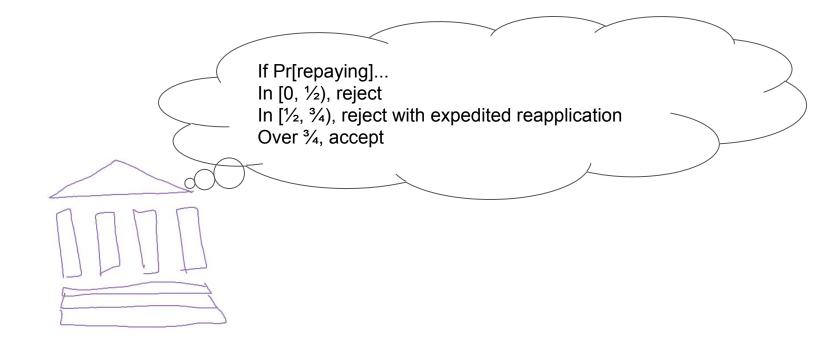
Visualizing our values: using property elicitation to understand the consequences of constraints

Jessie Finocchiaro Harvard CRCS / NSF Math 10 July 2023 EC Gender Inclusion Workshop

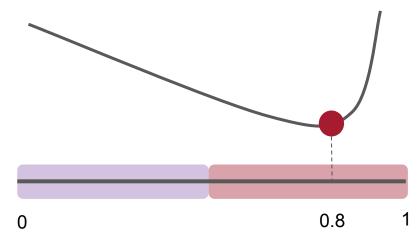
Make predictions about people all the time







Design loss functions to elicit such statistics



Accept this applicant

Set of outcomes Y	Y = {repay, default}
True p ∈ Δ_{Y}	p = Pr[repay] = 0.8
Set of predictions U	U = [0,1]
Set of treatments T	T = {award loan, reject loan}

What happens when we think about the population: adding regularizers

When treatments are individual, simply consider each treatment individually

$$\min_{\vec{u}} L(\vec{u}; \vec{p}) := \frac{1}{m} \sum_{i=1}^{m} L(u_i, p_i)$$

Fairness concerns often merit adding regularizers to losses

$$\min_{\vec{u}} L^{\lambda,R}(\vec{u};\vec{s};\vec{p}) := (1-\lambda) \frac{1}{m} \sum_{i=1}^m L(u_i,p_i) + \lambda R(\vec{u};\vec{s};\vec{p})$$

6

Now we need to consider population as a whole, and cannot abstract decisions to the individual level

Property elicitation

A loss L <u>elicits</u> a property Γ if, for all $p \in \Delta^{m}_{\mathcal{Y}}$, $\Gamma(\vec{p}) = \arg\min_{\vec{u}} L(\vec{u}; \vec{p})$

Since L is additive in u, this decomposes into $\{\Gamma(p_i)\}_i$

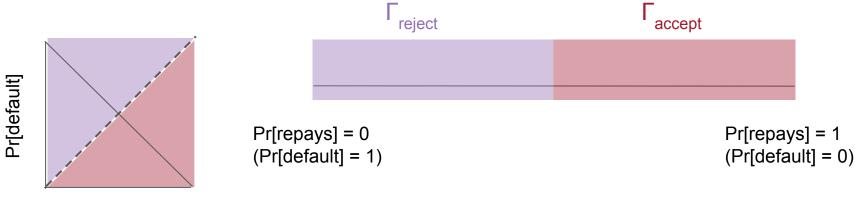
Fix s. A regularized loss elicits a regularized property Θ if, for all p in Δ^{m}_{γ} .

$$\Theta(\vec{p}) = \arg\min_{\vec{u}} L^{\lambda,R}(\vec{u};\vec{s};\vec{p})$$

Level sets of properties

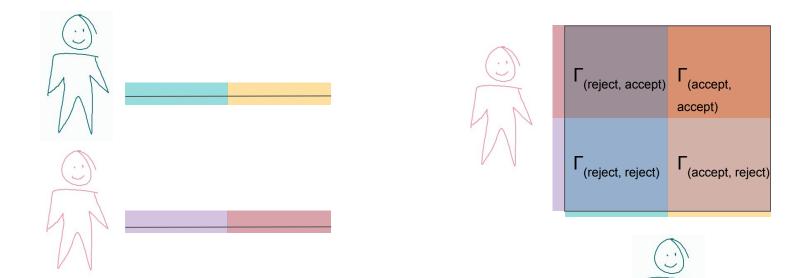
Predictions don't have to be perfect, so long as treatments are correct

 $\Gamma_t = \{ \vec{p} \in \Delta_{\mathcal{Y}}^m : t \in \Gamma(\vec{p}) \}$



Pr[repays]

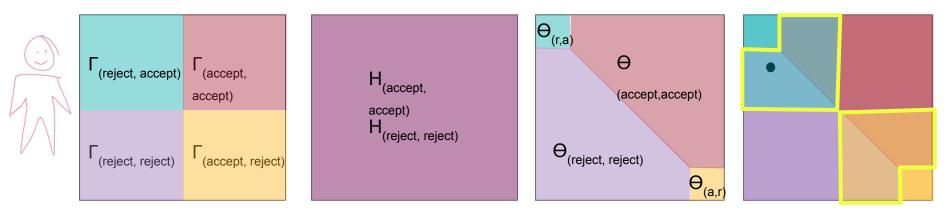
Example visualization: 2 agents, binary classification



When do regularizers change the original property?

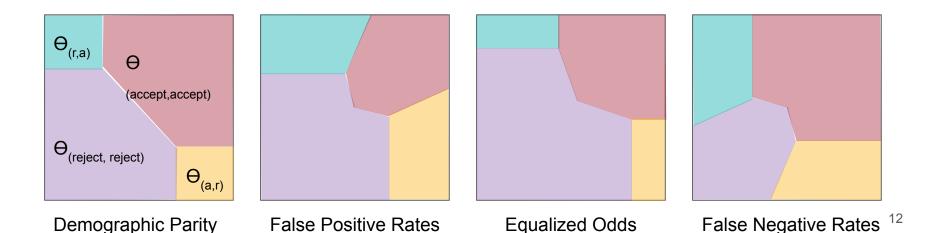
<u>Theorem (informal)</u>: Fix $\lambda \in (0,1)$. Let L elicit Γ , L^{R, λ} elicit Θ , and R (which is nonconstant) elicit H. Then $\Gamma = \Theta$ if and only if H = Γ .

Proof by picture: Counterexample with Demographic Parity

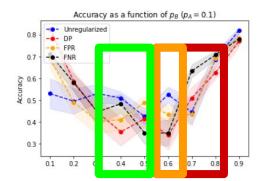


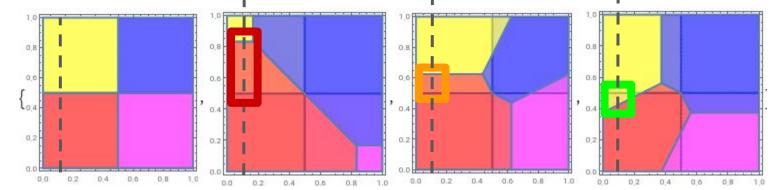
Corollary: common group fairness metrics change it up

- Most group fairness regularizers change the property
 - They are not additive, so regardless of Γ
- Notable exception: calibration
 - Implies changes imposed by calibration constraints are a result of expressiveness of the model

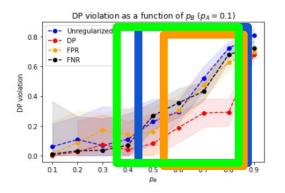


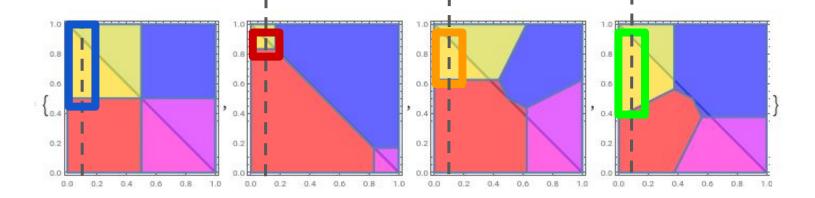
How decisions change as we go through distribution space





Fairness violations when regularized





14

In summary, come chat!

- Use high-dimensional property elicitation to study the impacts of different regularizers
 - Examples: group fairness constraints
- Can be used to explain performance gaps and translation across different fairness regularizers

Interested in collaborating, questions?

Email: jessie@seas.harvard.edu

Online: <u>www.jessiefin.com</u>

Experimental results

